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RIGIDITY AND VANISHING THEOREMS

ON Z/k SPINc MANIFOLDS

BO LIU AND JIANQING YU

Abstract. In this paper, we first establish an S1-equivariant index theo-
rem for Spinc Dirac operators on Z/k manifolds, and then combining this
equivariant index theorem with the methods developed by Liu-Ma-Zhang and
Taubes, we extend Witten’s rigidity theorem to the case of Z/k Spinc mani-
folds. Among others, our results resolve a conjecture of Devoto.

1. Introduction

In [27], Witten derived a series of elliptic operators on the free loop space LM
of a spin manifold M . In particular, the index of the formal signature operator on
a loop space turns out to be exactly the elliptic genus constructed by Landweber-
Stong [14] and Ochanine [24] in a topological way. Motivated by physics, Witten
conjectured that these elliptic operators should be rigid with respect to the circle
action.

This conjecture was first proved by Taubes [26] and Bott-Taubes [5]. See also
[11] and [13] for other interesting cases. By the modular invariance property, Liu
([16, 17]) presented a simple and unified proof of the above conjecture as well as
various further generalizations. In particular, several new vanishing theorems were
established in [16, 17]. Furthermore, on the equivariant Chern character level, Liu
and Ma ([18,19]) generalized Witten’s rigidity theorem to the family case and also
obtained several vanishing theorems for elliptic genera. In [20,21], inspired by [26],
Liu, Ma and Zhang established the corresponding family rigidity and vanishing
theorems on the equivariant K-theory level.

In [29], Zhang established an equivariant index theorem for circle actions on Z/k
spin manifolds and pointed out that by combining it with the analytic arguments
developed in [21], one can prove an extension of Witten’s rigidity theorem to Z/k
spin manifolds. The purpose of this paper is to extend the result of [29] to Z/k Spinc

manifolds and then establish Witten’s rigidity theorem for Z/k Spinc manifolds.
Recall that a Z/k manifold X is a smooth manifold with boundary ∂X which
consists of k disjoint pieces, each of which is diffeomorphic to a given closed manifold
Y (cf. [23]). It is interesting that for a Dirac operator D on a Z/k manifold, the
APS-ind(D) mod kZ determines a topological invariant in Z/kZ, where APS-ind(D)
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is the index of D which is imposed on the boundary condition of Atiyah-Patodi-
Singer type [1]. Freed and Melrose [8] proved a mod k index theorem,

(1.1) APS-ind(D) mod kZ = t-ind(D) ,

giving APS-ind(D) mod kZ a purely topological interpretation.
Assume that X is a Z/k manifold which admits a Z/k circle action (cf. Section

2.2). Let D be a Dirac operator on X which commutes with the circle action. Let
R(S1) denote the representation ring of S1. The equivariant topological index of D
is defined by Freed and Melrose [8] as an element of Z/kZ⊗R(S1), and we denote
it by t-indS1(D). Then there exist Rn ∈ Z/kZ such that

(1.2) t-indS1(D) =
∑
n∈Z

Rn ⊗ [n] ,

where by [n] (n ∈ Z) we mean the one dimensional complex vector space on which
S1 acts as multiplication by gn for a generator g ∈ S1.

On the other hand, by applying the equivariant index theorem for Z/k manifolds
established by Freed and Melrose in [8], one gets for n ∈ Z,

(1.3) Rn = APS-ind(D,n) mod kZ .

See (2.9) for the definition of APS-ind(D,n).
The Dirac operator D on X is said to be rigid in Z/k category for the circle

action if its equivariant topological index t-indS1(D) verifies that for n ∈ Z, n �= 0,
one has

(1.4) Rn = 0 in Z/kZ.

Furthermore, we say D has vanishing property in Z/k category if its equivariant
topological index t-indS1(D) is identically zero, i.e., (1.4) holds for any n ∈ Z.

In [7], Devoto introduced what he called mod k elliptic genus for Z/k spin mani-
folds as an S1-equivariant topological index in the sense of [8] of some twisted Dirac
operator and conjectured that this mod k elliptic genus is rigid in Z/k category.
In this paper, following the suggestion in [29, Remark 1], we present a proof of
Devoto’s conjecture. Moreover, we establish our results for Z/k Spinc manifolds,
thus generalizing [17, Theorems A and B] to the case of Z/k Spinc manifolds.

Our proof of these rigidity results consists of two steps. In step 1 (Sections 2 and
3), we extend the Z/k equivariant index theorem of Zhang [29] to the Spinc case. In
step 2 (Sections 4 and 5), using the mod k localization index theorem established
in step 1 and modifying the process in [20, 21], we prove the main results of this
paper.

This paper is organized as follows. In Section 2, we state an S1-equivariant
index theorem for Spinc Dirac operators on Z/k manifolds (cf. Theorem 2.8). As
an application, we extend Hattori’s vanishing theorem [9] to the case of Z/k almost
complex manifolds. In Section 3, we prove the S1-equivariant index theorem stated
in Section 2. In Section 4, we prove our main results (cf. Theorem 4.1), the rigidity
and vanishing theorems for Z/k Spinc manifolds, which generalize [17, Theorems
A and B]. When applied to Z/k spin manifolds, our results resolve a conjecture of
Devoto [7]. Section 5 is devoted to the proof of two intermediate results, Theorems
4.6 and 4.7, which are used in the proof of our main results in Section 4.
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2. Spin
c
Dirac operators and a mod k localization formula

In this section, for a Z/k manifold which admits a nontrivial Z/k circle action, we
state a mod k localization formula for S1-equivariant Spinc Dirac operators, whose
proof will be given in Section 3. As an application, we deduce the rigidity and
vanishing property for several Dirac operators on a Z/k almost complex manifold.
In particular, we extend Hattori’s vanishing theorem [9] to the case of Z/k almost
complex manifolds.

This section is organized as follows. In Section 2.1, we review the construction
of Spinc Dirac operators on Z/k manifolds and the Atiyah-Patodi-Singer boundary
problems. In Section 2.2, we recall the relevant facts about circle actions on Z/k
manifolds and present a variation formula for the indices of these boundary prob-
lems. In Section 2.3, we state the mod k localization formula for Z/k circle actions.
As an application, in Section 2.4, we extend Hattori’s vanishing theorem [9] to the
case of Z/k almost complex manifolds.

2.1. Spinc Dirac operators on Z/k manifolds. We first recall the definition of
Z/k manifolds introduced by Morgan and Sullivan (cf. [23]).

Definition 2.1 (cf. [29, Definition 1.1]). A compact Z/k manifold is a compact

manifold X with boundary ∂X, which admits a decomposition ∂X =
⊔k

i=1(∂X)i
into k disjoint manifolds and k diffeomorphisms πi : (∂X)i → Y to a closed manifold
Y . We use the triple (X,Y, π) to denote this Z/k manifold. We will also denote it
by X for simplicity if there is no confusion.

Let (X,Y, π) be a Z/k manifold. In what follows, as in [29], we will call an object
α (e.g., metrics, connections, vector bundles, Spinc-structures, etc.) over X a Z/k
object if there is a corresponding object β on Y such that α|∂X = π∗β.

Given a Z/k manifold (X,Y, π), one obtains a quotient space X by identifying
each of the k disjoint pieces of the boundary ∂X. In this paper, by a topological
object (e.g., cohomology, characteristic classes, K-group, etc.) on a Z/k manifold
(X,Y, π), we will mean the corresponding object on its quotient space X.

Remark 2.2. It is of critical importance that X has the homotopy type of a CW
complex, which implies that the first Chern class c1 induces a 1-to-1 correspondence
between the equivalence classes of the Z/k complex line bundles over X and the
elements of H2(X;Z).

We make the assumption that (X,Y, π) is a Z/k manifold, which is Z/k oriented
and of dimension 2l.

Let V be a Z/k real vector bundle over X which is of dimension 2p and is Z/k
oriented. Let L be a Z/k complex line bundle over X with the property that the
vector bundle U = TX⊕V satisfies ω2(U) = c1(L) mod (2), where ω2 denotes the
second Stiefel-Whitney class and c1 denotes the first Chern class. Then the Z/k
vector bundle U has a Z/k Spinc-structure.

Let gTX be a Z/k Riemannian metric on X. Let gT∂X be its restriction on T∂X.
Let ε0 > 0 be less than the injectivity radius of gTX . We use the inward geodesic
flow to identify a neighborhood of the boundary with the collar [0, ε0) × ∂X. We
assume that gTX has a product structure decomposition near ∂X. That is, there
is an open neighborhood Uε = [0, ε) × ∂X of ∂X in X with 0 < ε ≤ ε0 such that
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one has the orthogonal splitting on Uε,

(2.1) gTX |Uε
= dr2 ⊕ π∗

ε g
T∂X ,

where πε : [0, ε)× ∂X → ∂X is the obvious projection onto the second factor.
Let ∇TX be the Levi-Civita connection on (TX, gTX). Then ∇TX is a Z/k

connection.
Let W be a Z/k complex vector bundle over X with a Z/k Hermitian metric

gW . Let ∇W be a Z/k Hermitian connection on W with respect to gW . We make
the assumption that gW and ∇W both have product structure decompositions near
∂X. That is, over the open neighborhood Uε of ∂X, one has

(2.2) W |Uε
= π∗

ε (W |∂X), gW |Uε
= π∗

ε (g
W |∂X), and ∇W |Uε

= π∗
ε (∇W |∂X).

Let gV (resp. gL) be a Z/k Euclidean (resp. Hermitian) metric on V (resp. L),
and∇V (resp. ∇L) be a corresponding Z/k Euclidean (resp. Hermitian) connection
on V (resp. L). We make the assumption that gV , ∇V , gL, ∇L all have product
structure decompositions near ∂X (cf. (2.2)).

By taking ε > 0 sufficiently small, one can always find metrics gTX , gW , gV , gL

and connections ∇W , ∇V , ∇L verifying the above assumptions.
The Clifford algebra bundle C(TX) is the bundle of Clifford algebras over X

whose fiber at x ∈ X is the Clifford algebra C(TxX) (cf. [15]). Let C(V ) be the
Clifford algebra bundle of (V, gV ).

Let S(U,L) be the fundamental complex spinor bundle for (U,L) (cf. [15, Ap-
pendix D]). We denote by c(·) the Clifford action of C(TX), C(V ) on S(U,L).

Let {ei}2li=1 (resp. {fj}2pj=1) be an oriented orthonormal basis of (TX, gTX) (resp.

(V, gV )). There are two canonical ways to consider S(U,L) as a Z2-graded vector
bundle. Let

τs = (
√
−1)lc(e1) · · · c(e2l),

τe = (
√
−1)l+pc(e1) · · · c(e2l)c(f1) · · · c(f2p)

(2.3)

be two involutions of S(U,L). Then τ2s = τ2e = 1. We point out here that by
[3, Lemma 3.17], τs and τe are well defined. This remark applies in the remaining
part where we use local (oriented) frames to define an involution. We decompose
S(U,L) = S+(U,L)⊕S−(U,L) corresponding to τs (resp. τe) such that τs|S±(U,L) =
±1 (resp. τe|S±(U,L) = ±1).

We always fix an involution τ on S(U,L), either τs or τe, without further notice.
Let ∇S(U,L) be the Hermitian connection on S(U,L) induced by ∇TX ⊕ ∇V and
∇L (cf. [15, Appendix D]). Then ∇S(U,L) preserves the Z2-grading of S(U,L). Let
∇S(U,L)⊗W be the Hermitian connection on S(U,L)⊗W obtained from the tensor
product of ∇S(U,L) and ∇W .

Definition 2.3. The twisted Spinc Dirac operator DX on S(U,L)⊗W over X is
defined by

(2.4) DX =

2l∑
i=1

c(ei)∇S(U,L)⊗W
ei : Γ(X,S(U,L)⊗W ) −→ Γ(X,S(U,L)⊗W ).

Denote by DX
± the restrictions of DX on Γ(X,S±(U,L)⊗W ).

By [15], DX is a formally self-adjoint operator. To get an elliptic operator, we
impose the boundary condition of Atiyah-Patodi-Singer type [1].
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We first recall the canonical boundary operators (cf. [6, (1.4)]). For a first order
differential operator D : Γ(X,S(U,L)⊗W ) −→ Γ(X,S(U,L)⊗W ) on X, if there
exists ε > 0 sufficiently small such that the following identity holds on Uε,

(2.5) D = c

(
∂

∂r

)(
∂

∂r
+B

)
,

with B independent of r, then we will call B the canonical boundary operator
associated to D. When there is no confusion, we will also use B to denote its
restriction on Γ(X,S(U,L)⊗W )|∂X .

We then recall the Atiyah-Patodi-Singer projection associated to a boundary
operator (cf. [1]). Assume temporarily that B : Γ(X,S(U,L) ⊗ W )|∂X −→
Γ(X,S(U,L)⊗W )|∂X is a first order formally self-adjoint elliptic differential oper-
ator on ∂X. For any λ ∈ Spec (B), the spectrum of B, let Eλ be the eigenspace
corresponding to λ. For a ∈ R, let P≥a be the orthogonal projection from the L2-
completion of Γ(X,S(U,L)⊗W )|∂X onto

⊕
λ≥aEλ. We call the particular projec-

tion P≥0 the Atiyah-Patodi-Singer projection associated to B to emphasize its role
in [1]. If we assume in addition that B preserves the Z2-grading of Γ(X,S(U,L)⊗
W )|∂X , and let B± be the restrictions of B on Γ(X,S±(U,L) ⊗ W )|∂X , then we
will restrict P≥a on the L2-completions of Γ(X,S±(U,L)⊗W )|∂X and denote them
by P≥a,±.

Let e1 = ∂
∂r be the inward unit normal vector field perpendicular to ∂X. Let

e2, · · · , e2l be an oriented orthonormal basis of T∂X so that −e1, e2, · · · , e2l is an
oriented orthonormal basis of TX|∂X . We indicate here that we keep this orien-
tation so that the usual Stokes formula holds. Then using parallel transport with
respect to∇TX along the unit speed geodesics perpendicular to ∂X, −e1, e2, · · · , e2l
forms an oriented orthonormal basis of TX over Uε.

Definition 2.4. Let BX : Γ(X,S(U,L)⊗W )|∂X −→ Γ(X,S(U,L)⊗W )|∂X be the
differential operator on ∂X defined by

(2.6) BX = −
2l∑
i=2

c

(
∂

∂r

)
c(ei)∇S(U,L)⊗W

ei .

By [1], BX is a formally self-adjoint first order elliptic differential operator in-
trinsically defined on ∂X, which is the canonical boundary operator associated to
DX and preserves the natural Z2-grading of (S(U,L)⊗W )|∂X .

We now recall the Dirac type operator [6, Definition 1.1] as well as the boundary
condition of Atiyah-Patodi-Singer type [1].

Definition 2.5. By a Dirac type operator on S(U,L)⊗W , we mean a first order
differential operator D : Γ(X,S(U,L) ⊗ W ) −→ Γ(X,S(U,L) ⊗ W ) such that
D − DX is an odd self-adjoint element of zero-th order and that its canonical
boundary operator B acting on Γ(X,S(U,L)⊗W )|∂X is formally self-adjoint. We
will also call the restrictions D± of D to Γ(X,S±(U,L)⊗W ) a Dirac type operator.

Now let D be a Z/k Dirac type operator with its canonical boundary operator
B. Obviously, B preserves the Z2-grading of Γ(X,S(U,L)⊗W )|∂X .

Following [1], the boundary problem

(D+, P≥0,+) :
{
s
∣∣ s ∈ Γ(X,S+(U,L)⊗W ), P≥0,+(s

∣∣
∂X

) = 0
}

−→ Γ(X,S−(U,L)⊗W )
(2.7)
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defines an elliptic boundary problem whose adjoint is (D−, P>0,−). Moreover, it
induces a Fredholm operator [1]. We will call the boundary problem (D+, P≥0,+)
the Atiyah-Patodi-Singer boundary problem associated to D+. Set

(2.8) APS-ind(D) = dimker(D+, P≥0,+)− dim ker(D−, P>0,−).

2.2. Z/k circle actions and a variation formula.

Definition 2.6. We will call a circle action on X a Z/k circle action if it preserves
∂X and there exists a corresponding circle action on Y such that these two actions
are compatible with π. The circle action is said to be nontrivial if it is not equal
to identity.

In what follows we assume that X admits a nontrivial Z/k circle action.
Recall that V , L, W are Z/k vector bundles. We assume that the Z/k circle

action on X lifts to Z/k circle actions on V , L and W , respectively. Without loss
of generality, we may and we will assume that these Z/k circle actions preserve
gTX , gV , gL, gW , ∇V , ∇L, ∇W and their product structure decompositions near
∂X. Here by “ the circle action preserves the product structure decomposition of
an object near ∂X ” we mean the circle action on the object over Uε is induced by
the one on its restriction to ∂X, where ε > 0 sufficiently small. We also assume
that the Z/k circle actions on TX, V and L lift to a Z/k circle action on S(U,L)
and preserves its Z2-grading.

Let E be a Z/k S1-equivariant vector bundle over X. Let EY be the S1-
equivariant vector bundle over Y induced from E through the map π : ∂X → Y .
Recall that the circle action on Γ(X, E ) is defined by (g · s)(x) = g(s(g−1x)) for
g ∈ S1, s ∈ Γ(X, E ), x ∈ X. Similarly, the group S1 acts on Γ(X, E )|∂X and
Γ(Y,EY ). For ξ ∈ Z, by the weight-ξ subspace of Γ(X, E ) (resp. Γ(X, E )|∂X ,
Γ(Y,EY )), we mean the subspace of Γ(X, E ) (resp. Γ(X, E )|∂X , Γ(Y,EY )) on which
S1 acts as multiplication by gξ for g ∈ S1.

For any ξ ∈ Z, let E±
ξ (resp. E±

ξ,∂ , E
±
Y,ξ) be the weight-ξ subspaces of

Γ(X,S±(U,L)⊗W )

(resp. Γ(X,S±(U,L)⊗W )|∂X , Γ(Y, (S(U,L)⊗W )Y )).
Let D be a Z/k S1-equivariant Dirac type operator on Γ(S(U,L) ⊗ W ) with

canonical boundary operator B acting on Γ(X,S(U,L)⊗W )|∂X . Let P≥0,+ be the
orthogonal projection associated to B+. For ξ ∈ Z, let D±,ξ and P≥0,+,ξ (resp.
P>0,−,ξ) be the restrictions of D± and P≥0,+ (resp. P>0,−) on the corresponding
weight-ξ subspaces E±

ξ and E+
ξ,∂ (resp. E−

ξ,∂) respectively. Then (D+,ξ, P≥0,+,ξ)
forms an elliptic boundary problem. Set

(2.9) APS-ind(D, ξ) = dimker(D+,ξ, P≥0,+,ξ)− dim ker(D−,ξ, P>0,−,ξ) .

Let
{
Dt : Γ(X,S(U,L) ⊗ W ) −→ Γ(X,S(U,L) ⊗ W )

∣∣ 0 ≤ t ≤ 1
}

be a one

parameter family of Z/k S1-equivariant Dirac type operators with the canonical
boundary operators

{
Bt

∣∣ 0 ≤ t ≤ 1
}
. For any t ∈ [0, 1], let DY

t,+ be the induced

operator from Bt,+ through the map π : ∂X → Y , and let Bt,+,ξ (resp. DY
t,+,ξ) be

the restriction of Bt,+ (resp. DY
t,+) on the weight-ξ subspace E+

ξ,∂ (resp. E+
Y,ξ). We

have the following variation formula.
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Theorem 2.7 (Compare with [6, Theorem 1.2]). The following identity holds:

APS-ind(D1, ξ)−APS-ind(D0, ξ) = − sf
{
Bt,+,ξ

∣∣ 0 ≤ t ≤ 1
}

= −k sf
{
DY

t,+,ξ

∣∣ 0 ≤ t ≤ 1
}
,

(2.10)

where sf is the notation for the spectral flow of [2]. In particular,

APS-ind(D1, ξ) ≡ APS-ind(D0, ξ) mod kZ .

Proof. The proof is the same as that of [6, Theorem 1.2].

2.3. A mod k localization formula for Z/k circle actions. Let H be the

canonical basis of Lie(S1) = R, i.e., for t ∈ R, exp(tH) = e2π
√
−1t ∈ S1. Let H be

the Killing vector field on X corresponding to H. Since the circle action on X is
of Z/k, H|∂X ⊂ T∂X induces a Killing vector field HY on Y . Let XH (resp. YH)
be the zero set of H (resp. HY ) on X (resp. Y ). Then XH is a Z/k manifold and
there is a canonical map πXH

: ∂XH → YH induced by π. In general, XH is not
connected. We fix a connected component XH,α of XH , and we omit the subscript
α if there is no confusion.

Clearly, XH intersects with ∂X transversally. Let gTXH be the metric on XH

induced by gTX . Then gTXH has a product structure decomposition near ∂XH . In
fact, by choosing ε > 0 small enough, we know U ′

ε = Uε ∩ XH carries the metric
naturally induced from gTX |Uε

.
Let π̃ : N → XH be the normal bundle to XH in X, which is identified to

be the orthogonal complement of TXH in TX|XH
. Then TX|XH

admits a Z/k
S1-equivariant decomposition (cf. [21, (1.8)])

(2.11) TX|XH
=

⊕
v �=0

Nv ⊕ TXH ,

where Nv is a Z/k complex vector bundle such that g ∈ S1 acts on it by gv with
v ∈ Z\{0}. We will regard N as a Z/k complex vector bundle and write NR for the
underlying real vector bundle of N . Clearly, N =

⊕
v �=0 Nv. For v �= 0, let Nv,R

denote the underlying real vector bundle of Nv.
Similarly, let

(2.12) W |XH
=

⊕
v

Wv, V |XH
=

⊕
v �=0

Vv ⊕ V R

0

be the Z/k S1-equivariant decompositions of the restrictions of W and V over XH

respectively, where Wv and Vv (v ∈ Z) are Z/k complex vector bundles over XH

on which g ∈ S1 acts by gv, and V R
0 is the real subbundle of V such that S1 acts as

identity. For v �= 0, let Vv,R denote the underlying real vector bundle of Vv. Denote
by 2p′ = dimV R

0 and 2l′ = dimXH .
Let us write

LF = L⊗

⎛⎝⊗
v �=0

detNv ⊗
⊗
v �=0

detVv

⎞⎠−1

.(2.13)

Then TXH⊕V R
0 has a Z/k Spinc-structure since ω2(TXH⊕V R

0 ) = c1(LF ) mod (2).
Let S(TXH ⊕ V R

0 , LF ) be the fundamental spinor bundle for (TXH ⊕ V R
0 , LF ) as

in Section 2.1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1388 BO LIU AND JIANQING YU

Recall that Nv,R and Vv,R (v �= 0) are canonically oriented by their complex
structures. The decompositions (2.11), (2.12) induce the orientations of TXH and

V R
0 respectively. Let {ei}2l

′

i=1, {fj}
2p′

j=1 be the corresponding oriented orthonormal

basis of (TXH , gTXH ) and (V R
0 , gV

R

0 ). There are two canonical ways to consider
S(TXH ⊕ V R

0 , LF ) as a Z2-graded vector bundle . Let

τs = (
√
−1)l

′
c(e1) · · · c(e2l′),

τe = (
√
−1)l

′+p′
c(e1) · · · c(e2l′)c(f1) · · · c(f2p′)

(2.14)

be two involutions of S(TXH ⊕ V R
0 , LF ). Then τ2s = τ2e = 1. We decompose

S(TXH ⊕ V R
0 , LF ) = S+(TXH ⊕ V R

0 , LF )⊕ S−(TXH ⊕ V R
0 , LF ) corresponding to

τs (resp. τe) such that τs|S±(TXH⊕V R

0 ,LF ) = ±1 (resp. τe|S±(TXH⊕V R

0 ,LF ) = ±1).

Let C(NR) be the Clifford algebra bundle of (NR, g
N ). Then Λ(N

∗
) is a C(NR)-

Clifford module. Namely, for e ∈ N , let e′ ∈ N
∗
correspond to e by the metric gN ,

and let

(2.15) c(e) =
√
2 e′∧ , c(e) = −

√
2 ie ,

where ∧ and i denote the exterior and interior multiplications, respectively. Let τN

be the involution on Λ(N
∗
) given by τN |Λeven/odd(N

∗
) = ±1.

Similarly, we can define the Clifford action of C(Vv,R) on the C(Vv,R)-Clifford

module Λ(V
∗
v) with the involution τVv |Λeven/odd(V

∗
v)

= ±1.

Upon restriction to XH , one has the following Z/k isomorphisms of Z2-graded
Clifford modules over XH (compare with [21, (1.49)]):

(2.16)
(
S(U,L), τs

)
|XH

�
(
S(TXH ⊕ V R

0 , LF ), τs
)
⊗̂

(
ΛN

∗
, τN

)
⊗̂
⊗̂
v �=0

(
ΛV

∗
v, id

)
,

where id denotes the trivial involution, and

(2.17)
(
S(U,L), τe

)
|XH

�
(
S(TXH ⊕ V R

0 , LF ), τe
)
⊗̂
(
ΛN

∗
, τN

)
⊗̂

⊗̂
v �=0

(
ΛV

∗
v, τ

V
v

)
.

Here we denote by ⊗̂ the Z2-graded tensor product (cf. [15, p. 11]). Furthermore,
isomorphisms (2.16), (2.17) give the identifications of the canonical connections
on the bundles (compare with [21, (1.13)]). We still denote the involution on
S(TXH ⊕ V R

0 , LF ) by τ .
Let R be a Z/k Hermitian vector bundle over XH endowed with a Z/k Hermitian

connection. We make the assumption that the Hermitian metric and the Hermitian
connection both have product structure decompositions near ∂XH . We will denote
by DXH ⊗ R the twisted Spinc Dirac operator on S(TXH ⊕ V R

0 , LF ) ⊗ R and by
DXH,α ⊗R its restriction to XH,α (cf. Definition 2.3).

We denote by K(XH) the K-group of Z/k complex vector bundles over XH (cf.
[8, p. 285]). We use the same notation as in [21, p. 128],

Symq(R) =

+∞∑
n=0

qnSymn(R) ∈ K(XH)[[q]],

Λq(R) =

+∞∑
n=0

qnΛn(R) ∈ K(XH)[[q]],

(2.18)

for the symmetric and exterior power operations in K(XH)[[q]], respectively.
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Let S1 act on L|XH
by sending g ∈ S1 to glc (lc ∈ Z) on XH . Then lc is

locally constant on XH . Following [21, (1.50)], we define the following elements in

K(XH)[[q
1
2 ]]:

R±(q) = q
1
2
∑

v |v| dimNv−1
2
∑

v v dimVv+
1
2 lc

⊗
v>0

(
Symqv (Nv)⊗ detNv

)
⊗

⊗
v<0

Symq−v (Nv)⊗
⊗
v �=0

Λ±qv (Vv)⊗
(∑

v

qvWv

)
=

∑
n

R±,nq
n ,

(2.19)

R′
±(q) = q−

1
2
∑

v |v| dimNv− 1
2
∑

v v dimVv+
1
2 lc

⊗
v>0

Symq−v (Nv)

⊗
⊗
v<0

(
Symqv(Nv)⊗ detNv

)
⊗

⊗
v �=0

Λ±qv (Vv)⊗
(∑

v

qvWv

)
=

∑
n

R′
±,nq

n.

(2.20)

As explained in [21, p. 139], since TX ⊕ V ⊕ L is spin, one gets

(2.21)
∑
v

v dimNv +
∑
v

v dimVv + lc ≡ 0 mod (2).

Therefore, R±,ξ(q), R
′
±,ξ(q) ∈ K(XH)[[q]].

Clearly each R±,ξ, R′
±,ξ (ξ ∈ Z) is a Z/k vector bundle over XH carrying a

canonically induced Z/k Hermitian metric and a canonically induced Z/k Hermitian
connection, which have product structure decompositions near ∂XH .

We now state a mod k localization formula which generalizes [21, Theorem 1.2]
to the case of Z/k manifolds. It also generalizes the Z/k equivariant index theorem
in [29, Theorem 2.1] to the case of Spinc-manifolds.

Theorem 2.8. For any ξ ∈ Z, the following identities hold:

APS-indτs
(
DX , ξ

)
≡

∑
α

(−1)
∑

0<v dimNv APS-indτs
(
DXH,α ⊗R+,ξ

)
(2.22)

≡
∑
α

(−1)
∑

v<0 dimNv APS-indτs
(
DXH,α ⊗R′

+,ξ

)
mod kZ ,

APS-indτe
(
DX , ξ

)
≡

∑
α

(−1)
∑

0<v dimNv APS-indτe
(
DXH,α ⊗R−,ξ

)
(2.23)

≡
∑
α

(−1)
∑

v<0 dimNv APS-indτe
(
DXH,α ⊗R′

−,ξ

)
mod kZ .

Proof. The proof will be given in Section 3.

2.4. A Z/k extension of Hattori’s vanishing theorem. In this subsection, we
assume that TX has a Z/k S1-equivariant almost complex structure J . Then one
has the canonical splitting

(2.24) TX ⊗R C = T (1,0)X ⊕ T (0,1)X,

where T (1,0)X and T (0,1)X are the eigenbundles of J corresponding to the eigen-
values

√
−1 and −

√
−1, respectively.
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Let KX = det(T (1,0)X) be the determinant line bundle of T (1,0)X over X.
Then the complex spinor bundle S(TX,KX) for (TX,KX) is Λ(T ∗(0,1)X) (cf. [15,
Appendix D]).

We suppose that c1(T
(1,0)X) = 0 mod (N) (N ∈ Z, N ≥ 2). As explained in

Section 2.1, the complex line bundle K
1/N
X is well defined over X. After replacing

the S1 action by its N -fold action, we can always assume that S1 acts on K
1/N
X . For

s ∈ Z, let DX ⊗K
s/N
X be the twisted Spinc Dirac operator on Λ(T ∗(0,1)X)⊗K

s/N
X

defined as in (2.4).
Using Theorem 2.8, we can generalize the main result of Hattori [9] to the case

of Z/k almost complex manifolds.

Theorem 2.9. Assume that X is a connected Z/k almost complex manifold with
a nontrivial Z/k circle action. If c1(T

(1,0)X) = 0 mod (N) (N ∈ Z, N ≥ 2), then

for s ∈ Z, −N < s < 0, DX ⊗ K
s/N
X has vanishing property in Z/k category. In

particular, the following identity holds:

(2.25) t-ind
(
DX ⊗K

s/N
X

)
= 0 in Z/kZ .

Proof. Using the almost complex structure on TXH induced by the almost complex
structure J on TX and by (2.11), we know that

(2.26) T (1,0)X
∣∣
XH

=
⊕
v �=0

Nv ⊕ T (1,0)XH ,

where Nv are complex subbundles of T (1,0)X
∣∣
XH

on which g ∈ S1 acts by multi-

plication by gv.
We claim that for each ξ ∈ Z, the following identity holds:

(2.27) APS-ind
(
DX ⊗K

s/N
X , ξ

)
≡ 0 mod kZ .

In fact, if XH = ∅, the empty set, by Theorem 2.8, (2.27) is obvious.
When XH �= ∅, we see that

∑
v |v| dimNv > 0 (i.e., at least one of the Nv’s is

nonzero) on each connected component of XH . From (2.26), one sees that g ∈ S1

acts on KX |XH
by multiplication by g

∑
v v dimNv . Set

a1 = inf
α

( 1

2

∑
v

|v| dimNv +
(1
2
+

s

N

)∑
v

v dimNv

)
,

a2 = sup
α

(
−1

2

∑
v

|v| dimNv +
(1
2
+

s

N

)∑
v

v dimNv

)
.

Consider R+(q), R
′
+(q) of (2.19) and (2.20) for the case that V = 0 and W =

K
s/N
X . The power of q in R+(q) is at least a1, and the power of q in R′

+(q) is at
most a2. Thus, we deduce that

R+,ξ = 0 if ξ < a1, and R′
+,ξ = 0 if ξ > a2.

Since −N < s < 0, we know a1 > 0 and a2 < 0. By using Theorem 2.8, we see that
(2.27) holds for any ξ ∈ Z.

Now Theorem 2.9 follows easily from (1.1), (1.3) and (2.27).

Remark 2.10. From the proof of Theorem 2.9, one also deduces that if X is a
connected Z/k almost complex manifold with a nontrivial Z/k circle action, then
DX , DX ⊗K−1

X are rigid in Z/k category.
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3. A proof of Theorem 2.8

In this section, following Zhang [29] and by making use of the analysis of Wu-
Zhang [28] and Dai-Zhang [6] as well as Liu-Ma-Zhang [21], which in turn depend
on the analytic localization techniques of Bismut-Lebeau [4], we present a proof of
Theorem 2.8.

This section is organized as follows. In Section 3.1, we recall a result from [28]
concerning the Witten deformation on flat spaces. In Section 3.2, we establish the
Taylor expansions of DX and c(H) (resp. BX) near the fixed point set XH (resp.
∂XH). In Section 3.3, following [6, Section 3(b)], we decompose the Dirac type
operators under consideration to a sum of four operators and introduce a defor-
mation of the Dirac type operators as well as their associated boundary operators.
In Section 3.4, by using the techniques of [6, Section 3(c)], [21, Section 1.2] and
[4, Section 9], we carry out various estimates for certain operators and prove the
Fredholm property of the Atiyah-Patodi-Singer type boundary problem for the de-
formed operators introduced in Section 3.3. In Section 3.5, we complete the proof
of Theorem 2.8.

3.1. Witten deformation on flat spaces. Recall that H is the canonical basis
of Lie(S1) = R. In this subsection, let W be a complex vector space of dimension
n with a Hermitian form. Let ρ be a unitary representation of the circle group S1

on W such that all the weights are nonzero. Suppose W± are the subspaces of W
corresponding to the positive and negative weights respectively, with dimC W− = ν,
dimC W+ = n− ν. Let z = {zi} be the complex linear coordinates on W such that
the Hermitian structure on W takes the standard form and ρ is diagonal with
weights λi ∈ Z\{0} (1 ≤ i ≤ n), and λi < 0 for i ≤ ν. The Lie algebra action on W
is given by the vector field

(3.1) H = 2π
√
−1

n∑
i=1

λi

(
zi

∂

∂zi
− z̄i

∂

∂z̄i

)
.

Set

(3.2) K±(W ) = Sym((W±)∗)⊗ Sym(W∓)⊗ det(W∓).

Let E be a finite dimensional complex vector space with a Hermitian form and
suppose E carries a unitary representation of S1.

Let ∂ be the twisted Dolbeault operator acting on Ω0,∗(W,E), the set of smooth

sections of Λ(W
∗
)⊗E onW . Let ∂

∗
be the formal adjoint of ∂. LetD =

√
2(∂+∂

∗
).

Let c(H) be the Clifford action of H on Λ(W
∗
) defined as in (2.15). Let LH be

the Lie derivative along H acting on Ω0,∗(W,E).
The following result was proved in [28, Proposition 3.2].

Proposition 3.1. 1. A basis of the space of L2-solutions of D +
√
−1c(H) (resp.

D −
√
−1c(H)) on the space of C∞ sections of Λ(W

∗
)⊗ E is given by

(3.3)
( ν∏
i=1

zki
i

)( n∏
i=ν+1

z̄ki
i

)
e−

∑n
i=1 π|λi||zi|2dz̄ν+1 · · · dz̄n (ki ∈ N)
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with weight
∑ν

i=1 ki|λi|+
∑n

i=ν+1(ki + 1)|λi| (resp.

(3.4)
( ν∏
i=1

z̄ki
i

)( n∏
i=ν+1

zki
i

)
e−

∑n
i=1 π|λi||zi|2dz̄1 · · · dz̄ν (ki ∈ N)

with weight −
∑n

i=ν+1 ki|λi| −
∑ν

i=1(ki + 1)|λi|).
So the space of L2-solutions of a given weight of D +

√
−1c(H) (resp. D −√

−1c(H)) on the space of C∞ sections of Λ(W
∗
) ⊗ E is finite dimensional. The

direct sum of these weight spaces is isomorphic to K−(W )⊗E (resp. K+(W )⊗E)
as representations of S1.

2. When restricted to an eigenspace of LH , the operator D +
√
−1c(H) (resp.

D −
√
−1c(H)) has discrete eigenvalues.

3.2. A Taylor expansion of certain operators near the fixed point set.
Following [4, Section 8(e)], we now describe a coordinate system on X near XH .
For ε > 0, set Bε =

{
Z ∈ N

∣∣ |Z| < ε
}
. Since X and XH are compact, there exists

ε0 > 0 such that for 0 < ε ≤ ε0, the exponential map

(y, Z) ∈ N �−→ expXy (Z) ∈ X

is a diffeomorphism from Bε onto a tubular neighborhood Vε ofXH inX. From now
on, we identify Bε with Vε and use the notation x = (y, Z) instead of x = expXy (Z).
Finally, we identify y ∈ XH with (y, 0) ∈ N .

Let π̃∗((S(U,L)⊗W )|XH
) be the vector bundle on N obtained by pulling back

(S(U,L)⊗W )|XH
for π̃ : N → XH .

Let gTXH , gN be the corresponding metrics on TXH and N induced by gTX .
Let dvX , dvXH

and dvN be the corresponding volume elements on (TX, gTX),
(TXH , gTXH ) and (N, gN ). Let k(y, Z) ((y, Z) ∈ Bε) be the smooth positive
function defined by

(3.5) dvX(y, Z) = k(y, Z)dvXH
(y)dvNy

(Z).

Then k(y) = 1 and ∂k
∂Z (y) = 0 for y ∈ XH . The latter follows from the well-known

fact that XH is totally geodesic in X.
For x = (y, Z) ∈ Vε0 , we will identify S(U,L)x with S(U,L)y and Wx with Wy

by the parallel transport with respect to the S1-invariant connections ∇S(U,L) and
∇W respectively, along the geodesic t �−→ (y, tZ). The induced identification of
(S(U,L)⊗W )x with (S(U,L)⊗W )y preserves the metric and the Z2-grading, and
moreover, is S1-equivariant. Consequently, DX can be considered as an operator
acting on the sections of the bundle π̃∗((S(U,L) ⊗ W )|XH

) over Bε0 commuting
with the circle action.

For ε > 0, let E(ε) (resp. E) be the set of smooth sections of

π̃∗((S(U,L)⊗W )|XH
)

on Bε (resp. on the total space of N). If f, g ∈ E have compact supports, we will
write

(3.6) 〈f, g〉 =
(

1

2π

)dimX ∫
XH

(∫
N

〈f, g〉(y, Z)dvNy
(Z)

)
dvXH

(y).

Then k1/2DXk−1/2 is a (formally) self-adjoint operator on E.
The connection ∇N on N induces a splitting TN = N ⊕ THN , where THN

is the horizontal part of TN with respect to ∇N . Moreover, since XH is totally
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geodesic, this splitting, when restricted to XH , is preserved by the connection ∇TX

on TX|XH
. Let ∇̃ be the connection on (S(U,L)⊗W )|XH

induced by the restriction

of ∇S(U,L)⊗W to XH . We denote by π̃∗∇̃ the pulling back of the connection ∇̃ on
(S(U,L)⊗W )|XH

to the bundle π̃∗((S(U,L)⊗W )|XH
).

We choose a local orthonormal basis of TX such that e1, · · · , e2l′ form a basis of
TXH , and e2l′+1, · · · , e2l, that of NR. Denote the horizontal lift of ei (1 ≤ i ≤ 2l′)
to THN by eHi . We define

(3.7) DH =
2l′∑
i=1

c(ei)(π̃
∗∇̃)eHi , DN =

2l∑
i=2l′+1

c(ei)(π̃
∗∇̃)ei .

Clearly, DN acts along the fibers of N . Let ∂
N

be the ∂-operator along the fibers

of N , and let ∂
N∗

be its formal adjoint with respect to (3.6). It is easy to see that

DN =
√
2
(
∂
N
+ ∂

N∗)
. Both DN and DH are formally self-adjoint with respect to

(3.6).

For T > 0, we define a scaling f ∈ E(ε0) → ST f ∈ E(ε0
√
T ) by

(3.8) ST f(y, Z) = f

(
y,

Z√
T

)
, (y, Z) ∈ Bε0

√
T .

For a first order differential operator

(3.9) QT =
2l′∑
i=1

aiT (y, Z)(π̃∗∇̃)eHi +
2l∑

i=2l′+1

biT (y, Z)(π̃∗∇̃)ei + cT (y, Z)

acting on E(ε0
√
T ), where aiT , b

i
T , and cT are endomorphisms of

π̃∗((S(U,L)⊗W )|XH
)

which depend smoothly on (y, Z), we write

(3.10) QT = O
(
|Z|2∂N + |Z|∂H + |Z|+ |Z|p

)
if there is a constant C > 0, p ∈ N such that for any T ≥ 1, (y, Z) ∈ Bε0

√
T , we

have

|aiT (y, Z)| ≤ C|Z| (1 ≤ i ≤ 2l′),

|biT (y, Z)| ≤ C|Z|2 (2l′ + 1 ≤ i ≤ 2l),

|cT (y, Z)| ≤ C(|Z|+ |Z|p) .
(3.11)

Let E∂ be the set of smooth sections of π̃∗((S(U,L)⊗W )|XH
) over N |∂XH

. On
the boundary of XH , we choose the local orthonormal basis as in Definition 2.4.
Similarly as in (2.6), we define

(3.12) BH = −
2l′∑
i=2

c

(
∂

∂r

)
c(ei)(π̃

∗∇̃)eHi , BN = −c

(
∂

∂r

)
DN |∂XH

on E∂ (compare with (3.7)).
Let JH be the representation of Lie(S1) on N . Then Z → JHZ is a Killing vector

field on N . We have the following analogue of [4, Theorem 8.18], [21, Proposition
1.2] and [28, Proposition 3.3].
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Proposition 3.2. As T → +∞,

STk
1/2DXk−1/2S−1

T =
√
TDN +DH +

1√
T
O(|Z|2∂N + |Z|∂H + |Z|),

STk
1/2c(H)k−1/2S−1

T =
1√
T
c(JHZ) +

1√
T 3

O(|Z|3),

STk
1/2BXk−1/2S−1

T =
√
TBN +BH +

1√
T
O(|Z|2∂N + |Z|∂H + |Z|).

3.3. A decomposition of Dirac type operators under consideration and
the associated deformation. For p ≥ 0, let Ep (resp. Ep

∂ , E
p, Fp, Fp

∂) be the set
of sections of the bundles S(U,L)⊗W over X (resp. (S(U,L)⊗W )|∂X over ∂X,

π̃∗((S(U,L)⊗W )|XH
) over N , S(TXH ⊕V R

0 , LF )⊗K−(N)⊗
(⊗̂

v �=0ΛVv ⊗W
)
|XH

over XH ,
(
S(TXH ⊕ V R

0 , LF ) ⊗K−(N) ⊗
⊗̂

v �=0ΛVv ⊗W
)
|∂XH

over ∂XH) which

lie in the p-th Sobolev spaces. The group S1 acts on all these spaces (cf. Section
2.2). For any ξ ∈ Z, let Ep

ξ , E
p
ξ,∂ Ep

ξ , F
p
ξ and Fp

ξ,∂ be the corresponding weight-ξ
subspaces, respectively.

Recall that the constant ε0 > 0 is defined in the last subsection. We now take
ε ∈ (0, ε02 ]. Let ρ : R → [0, 1] be a smooth function such that

(3.13) ρ(a) =

{
1 if a ≤ 1

2 ,

0 if a ≥ 1.

For Z ∈ N , set ρε(Z) = ρ( |Z|
ε ).

By Proposition 3.1, the solution space of the operator DN +
√
−1Tc(JHZ) along

the fiber Ny (y ∈ XH) is the L2 completion of K−(Ny)⊗ (
⊗̂

v �=0ΛVv ⊗W )y. They
form an infinite dimensional Hermitian complex vector bundle

K−(N)⊗
(⊗̂

v �=0
ΛVv ⊗W

)∣∣
XH

over XH , with the Hermitian connection induced from those on N , V |XH
→ XH

and W |XH
→ XH . Let θ be the isomorphism from

L2
(
XH ,K−(N)⊗

(⊗̂
v �=0

ΛVv ⊗W
)∣∣

XH

)
to L2(N, π̃∗((ΛN

∗ ⊗
⊗̂

v �=0ΛVv ⊗W )|XH
)) given by Proposition 3.1.

Let α ∈ Γ
(
XH , S(TXH ⊕ V R

0 , LF )
)
, φ ∈ L2(XH ,K−(N)⊗(

⊗̂
v �=0ΛVv⊗W )|XH

),
σ = α⊗ φ. We define a linear map

(3.14) IT,ξ : Fp
ξ −→ Ep

ξ , σ �−→ T
dim N

R

2 ρε(Z) π̃∗α ∧ S−1
T (θφ).

In general, there exist c(ε) > 0 and C > 0 such that c(ε) < ‖IT,ξ‖ < C.
Let the image of IT,ξ from Fp

ξ be Ep
T,ξ = IT,ξF

p
ξ ⊆ Ep

ξ . Denote the orthogonal

complement of E0
T,ξ in E0

ξ by E0,⊥
T,ξ , and let Ep,⊥

T,ξ = Ep
ξ ∩ E0,⊥

T,ξ . Let pT,ξ and p⊥T,ξ

be the orthogonal projections from E0
ξ to E0

T,ξ and E0,⊥
T,ξ respectively.

We denote by
(( ⊗̂

v �=0ΛVv

)
⊗

(⊕
v Wv

))
ξ− 1

2

∑
v |v| dimNv

the subbundle of(⊗̂
v �=0

ΛVv

)
⊗

(⊕
v

Wv

)
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whose weight equals ξ− 1
2

∑
v |v| dimNv with respect to the given circle action. Let

qξ be the orthogonal bundle projection from the vector bundle(⊗̂
v �=0

ΛN
∗
v

)
⊗̂

(⊗̂
v �=0

ΛVv

)
⊗

(⊕
v

Wv

)
−→ XH

to its subbundle⊗
v>0

detNv ⊗̂
((⊗̂

v �=0
ΛVv

)
⊗

(⊕
v

Wv

))
ξ− 1

2

∑
v |v| dimNv

−→ XH ,

where we identify ΛN
∗
v with ΛNv via the metric for v �= 0.

We now proceed to deduce a formula which computes pT,ξs for s ∈ E0
ξ explicitly

under a local unitary trivialization of N .
For y0 ∈ XH , on a small neighborhood Vy0

⊂ XH of y0, choose a unitary
trivialization N |Vy0

∼= Vy0
× Cn = {(y, Z) | y ∈ Vy0

, Z = (z1, · · · , zn) ∈ Cn} such
that for t ∈ R,

exp(tH) · ∂

∂zi
= e2π

√
−1λit

∂

∂zi
.

Without loss of generality, we assume that λi < 0 for i ≤ ν and λi > 0 for ν < i ≤ n.

For any T > 0,
−→
k = (k1, · · · , kn) ∈ Nn, and (y, Z) ∈ Vy0

× Cn, set

f
T,

−→
k
(Z) =

( ν∏
i=1

zki

i

)( n∏
i=ν+1

z̄ki

i

)
e−T

∑n
i=1 π|λi||zi|2 ,

α
T,

−→
k
(y) =

∫
NR,y

ρ2ε(Z)
n∏

i=1

(
|zi|2kie−2Tπ|λi||zi|2

) dvN
(2π)dimNR

.

Computing directly, we have for s ∈ E0
ξ that (compare with [4, Proposition 9.2])

pT,ξs(y, Z) =
∑

−→
k ,ξ2, s.t.

∑n
i=1 ki|λi|+ξ2=ξ

α−1

T,
−→
k
ρε(Z)f

T,
−→
k
(Z)

· qξ2
∫
NR,y

ρε(Z
′)f

T,
−→
k
(Z ′)s(y, Z ′)

dvN (Z ′)

(2π)dimNR

.

(3.15)

Using (3.15), we get the following analogue of [4, Proposition 9.3].

Proposition 3.3. There exists C > 0 such that if T ≥ 1, σ ∈ F1
ξ, then

(3.16) ‖IT,ξσ‖E1
ξ
≤ C(‖σ‖F1

ξ
+
√
T‖σ‖F0

ξ
).

There exists C > 0 such that for any T ≥ 1, any s ∈ E1
ξ, then

(3.17) ‖pT,ξs‖E1
ξ
≤ C(‖s‖E1

ξ
+
√
T‖s‖E0

ξ
).

Given γ > 0, there exists C ′ > 0 such that for T ≥ 1, for s ∈ E0
ξ, then

(3.18) ‖pT,ξ|Z|γs‖E0
ξ
≤ C ′

T
γ
2

‖s‖E0
ξ
.

Since we have the identification of the bundles

(S(U,L)⊗W )|Vε0

� π̃∗
(
S(TXH ⊕ V R

0 , LF )⊗ Λ(N
∗
)⊗

(⊗̂
v �=0

ΛVv ⊗W
)
|XH

)∣∣∣∣
Bε0

,
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we can consider k−1/2IT,ξσ as an element of Ep
ξ for σ ∈ Fp

ξ . Set

(3.19) JT,ξ = k−1/2IT,ξ.

We denote by JT,ξ,∂ : Fp
ξ,∂ → Ep

ξ,∂ the restriction of JT,ξ on the boundary. Let

Ep
T,ξ = JT,ξF

p
ξ (resp. Ep

T,ξ,∂ = JT,ξ,∂F
p
ξ,∂) be the image of JT,ξ (resp. JT,ξ,∂).

Denote the orthogonal complement of E0
T,ξ (resp. E0

T,ξ,∂) in E0
ξ (resp. E0

ξ,∂) by

E0,⊥
T,ξ (resp. E0,⊥

T,ξ,∂) and let Ep,⊥
T,ξ = Ep

ξ ∩ E0,⊥
T,ξ (resp. Ep,⊥

T,ξ,∂ = Ep
ξ,∂ ∩ E0,⊥

T,ξ,∂). Let

p̄T,ξ (resp. p̄T,ξ,∂) and p̄⊥T,ξ (resp. p̄⊥T,ξ,∂) be the orthogonal projections from E0
ξ

(resp. E0
ξ,∂) to E0

T,ξ (resp. E0
T,ξ,∂) and E0,⊥

T,ξ (resp. E0,⊥
T,ξ,∂) respectively. It is clear

that p̄T,ξ = k−1/2pT,ξk
1/2 (resp. p̄T,ξ,∂ = k−1/2pT,ξ,∂k

1/2).
For any (possibly unbounded) operator A (resp. B) on E0

ξ (resp. E0
ξ,∂), we write

(3.20) A =

(
A(1) A(2)

A(3) A(4)

)
( resp. B =

(
B(1) B(2)

B(3) B(4)

)
)

according to the decomposition E0
ξ = E0

T,ξ ⊕ E0,⊥
T,ξ (resp. E0

ξ,∂ = E0
T,ξ,∂ ⊕ E0,⊥

T,ξ,∂),
i.e.,

A(1) = p̄T,ξA p̄T,ξ , A(2) = p̄T,ξA p̄⊥T,ξ ,(3.21)

A(3) = p̄⊥T,ξA p̄T,ξ , A(4) = p̄⊥T,ξA p̄⊥T,ξ

( resp. B(1) = p̄T,ξ,∂B p̄T,ξ,∂ , B(2) = p̄T,ξ,∂B p̄⊥T,ξ,∂ ,(3.22)

B(3) = p̄⊥T,ξ,∂B p̄T,ξ,∂ , B(4) = p̄⊥T,ξ,∂B p̄⊥T,ξ,∂).

For T > 0, set

(3.23) DT = DX +
√
−1Tc(H), BT = BX −

√
−1Tc

(
∂

∂r

)
c(H).

Then DT is a Dirac type operator with its canonical boundary operator BT in the
sense of Definition 2.5. Let DT,ξ and BT,ξ be the restrictions of DT and BT on E0

ξ

and E0
ξ,∂ , respectively.

We now introduce a deformation of DT,ξ (resp. BT,ξ) according to the decom-
position (3.21) (resp. (3.22)).

Definition 3.4 (cf. [6, Definition 3.2], [21, (1.39)]). For any T > 0, u ∈ [0, 1], set

DT,ξ(u) = D
(1)
T,ξ +D

(4)
T,ξ + u

(
D

(2)
T,ξ +D

(3)
T,ξ

)
,

BT,ξ(u) = B
(1)
T,ξ +B

(4)
T,ξ + u

(
B

(2)
T,ξ +B

(3)
T,ξ

)
.

(3.24)

As explained in [6, (3.26)-(3.27)], one verifies that the following identity holds
on U2ε/3:

(3.25) DT,ξ(u) = c

(
∂

∂r

)(
∂

∂r
+BT,ξ(u)

)
, u ∈ [0, 1],

where ε > 0 small enough is given in (2.5).
We still say that BT,ξ(u) is the boundary operator associated to DT,ξ(u), al-

though BT,ξ(u) are pseudo-differential operators for u ∈ [0, 1).
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3.4. Various estimates of the operators as T → +∞. We continue the discus-
sion in the previous subsection. Recall that

R±(1) =
⊗
v>0

(Sym(Nv)⊗ detNv)⊗
⊗
v<0

Sym(Nv)⊗
⊗
v �=0

Λ±1(Vv)⊗W.

Corresponding to the involution τ = τs (resp. τe) on S(U,L), let DXH

ξ be the

restriction of the twisted Spinc Dirac operator DXH ⊗R+(1) (resp. D
XH ⊗R−(1))

on F0
ξ , and let BXH

ξ be the restriction of the canonical boundary operator associated

to DXH ⊗R+(1) (resp. D
XH ⊗R−(1)) on F0

ξ,∂ .

With (3.15), (3.23) and Propositions 3.1, 3.2, 3.3 at our hands, by proceeding
exactly as in [4, Sections 8 and 9], we can show that the following estimates for

B
(i)
T,ξ (1 ≤ i ≤ 4) hold.

Proposition 3.5 (Compare with [6, Proposition 3.3]). (i) As T −→ +∞,

(3.26) J−1
T,ξ,∂B

(1)
T,ξJT,ξ,∂ = BXH

ξ +O

(
1√
T

)
,

where O( 1√
T
) denotes a first order differential operator whose coefficients are

dominated by C√
T

(C > 0).

(ii) For each ξ ∈ Z, there exists C1 > 0 such that for any T ≥ 1, s ∈ E1,⊥
T,ξ,∂ ,

s′ ∈ E1
T,ξ,∂ , we have∥∥B(2)

T,ξs
∥∥
E0

ξ,∂

≤ C1

( 1√
T
‖s‖E1

ξ,∂
+ ‖s‖E0

ξ,∂

)
,∥∥B(3)

T,ξs
′∥∥

E0
ξ,∂

≤ C1

( 1√
T
‖s′‖E1

ξ,∂
+ ‖s′‖E0

ξ,∂

)
.

(3.27)

(iii) For each ξ ∈ Z, there exist ε ∈ (0, ε04 ], T0 > 0, C2 > 0 such that for any

T ≥ T0, s ∈ E1,⊥
T,ξ,∂ , we have

(3.28)
∥∥B(4)

T,ξs
∥∥
E0

ξ,∂

≥ C2

(
‖s‖E1

ξ,∂
+
√
T ‖s‖E0

ξ,∂

)
.

From here, by proceeding as in [6, Section 3(c)], we can deduce that there exist
C3 > 0, T ′

1 > 0 such that for u ∈ [0, 1], T ≥ T ′
1 and s ∈ E1

ξ,∂ , the following inequality

holds (compare with [6, (3.12)]):

(3.29)
∥∥BT,ξs−BT,ξ(u)s

∥∥
E0

ξ,∂

≤ C3

( 1√
T
‖BT,ξs‖E0

ξ,∂
+ ‖s‖E0

ξ,∂

)
.

By the Kato-Rellich theorem [25, Theorem X. 12], we deduce that there exists
T1 > 0 such that for T ≥ T1, u ∈ [0, 1], each BT,ξ(u) is self-adjoint with domain
E1
ξ,∂ , elliptic and has discrete eigenvalues with finite multiplicity. Let PT,ξ(u) be

the orthogonal projection onto the nonnegative eigenspaces of BT,ξ(u). We still call
PT,ξ(u) the Atiyah-Patodi-Singer projection associated to BT,ξ(u).

For any T ≥ T1 and u ∈ [0, 1], let

DAPS,T,ξ(u) :
{
s ∈ E1

ξ

∣∣PT,ξ(u)(s|∂X) = 0
}
−→ E0

ξ

be the uniquely determined extension of DT,ξ(u).

Proposition 3.6 (Compare with [6, Proposition 3.5]). There exists T2 > 0 such
that for any u ∈ [0, 1] and T ≥ T2, DAPS,T,ξ(u) is a Fredholm operator.
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To prove Proposition 3.6, we modify the process in [6, Section 3(d)]. For the
case where s is supported in X\Uε′ (0 < ε′ < ε), we need an analogue of [6, Lemma
3.7]. As a matter of fact, using (3.15), (3.23) as well as Propositions 3.1, 3.2, 3.3
and proceeding exactly as in [4, Sections 8 and 9], we deduce the following interior
estimates.

Proposition 3.7. (i) As T −→ +∞,

(3.30) J−1
T,ξ D

(1)
T,ξJT,ξ = DXH

ξ +O

(
1√
T

)
,

where O( 1√
T
) denotes a first order differential operator whose coefficients are

dominated by C√
T

(C > 0).

(ii) For each ξ ∈ Z, there exists C ′
1 > 0 such that for any T ≥ 1, s ∈ E1,⊥

T,ξ ,

s′ ∈ E1
T,ξ with Supp (|s|+ |s′|) ⊂ X\Uε′ , we have

∥∥D(2)
T,ξs

∥∥
E0

ξ

≤ C ′
1

(
‖s‖E1

ξ√
T

+ ‖s‖E0
ξ

)
,

∥∥D(3)
T,ξs

′∥∥
E0

ξ

≤ C ′
1

(
‖s′‖E1

ξ√
T

+ ‖s′‖E0
ξ

)
.

(3.31)

(iii) For each ξ ∈ Z, there exist ε ∈ (0, ε04 ], T ′
0 > 0, C ′

2 > 0 such that for any

T ≥ T ′
0, s ∈ E1,⊥

T,ξ with Supp (|s|) ⊂ X\Uε′ , we have

(3.32)
∥∥D(4)

T,ξs
∥∥
E0

ξ

≥ C ′
2

(
‖s‖E1

ξ
+
√
T ‖s‖E0

ξ

)
.

With Propositions 3.5 and 3.7 at our hands, we can complete the proof of Propo-
sition 3.6 in the same way as in the proof of [6, Proposition 3.5] by applying the
gluing argument in [4, pp. 115-117].

3.5. A proof of Theorem 2.8. Let DYH

ξ be the induced operator from BXH

ξ

through πXH
. We first assume that DYH

ξ is invertible, so BXH

ξ is invertible. More-

over, we have the following analogue of [6, Proposition 3.8].

Proposition 3.8. If DYH

ξ is invertible, then there exists T3 > 0 such that for any

T ≥ T3, u ∈ [0, 1], the boundary operator BT,ξ(u) is invertible.

By Propositions 3.6 and 3.8, we have a continuous family of Fredholm operators
{DAPS,T,ξ(u)}0≤u≤1 when T is large enough. Furthermore, by Proposition 3.8
and Green’s formula, we know that the operators DAPS,T,ξ(u), 0 ≤ u ≤ 1, are self-
adjoint. By the homotopy invariance of the index of Fredholm operators, we get

(3.33) Tr
[
τ
∣∣
ker(DAPS,T,ξ(0))

]
= Tr

[
τ
∣∣
ker(DAPS,T,ξ(1))

]
.

Theorem 3.9 (Compare with [21, (1.43)]). If DYH

ξ is invertible, then there exists
T4 > 0 such that for any T ≥ T4, the following identity holds:

(3.34) APS-ind(DT,ξ) =
∑
α

(−1)
∑

0<v dimNv APS-ind
(
D

XH,α

ξ

)
.
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Proof. By the definitions of DAPS,T,ξ(u) and DT,ξ(u), we get that

(3.35) APS-ind(DT,ξ) = APS-ind(DT,ξ(1)) = Tr
[
τ
∣∣
ker(DAPS,T,ξ(1))

]
.

Let PT,ξ,1 (resp. PT,ξ,4) be the Atiyah-Patodi-Singer projection associated to

B
(1)
T,ξ (resp. B

(4)
T,ξ) acting on E0

T,ξ,∂ (resp. E0,⊥
T,ξ,∂). Let

D
(1)
APS,T,ξ :

{
s ∈ E1

T,ξ

∣∣PT,ξ,1(s|∂X) = 0
}
−→ E0

T,ξ,

D
(4)
APS,T,ξ :

{
s ∈ E1,⊥

T,ξ

∣∣PT,ξ,4(s|∂X) = 0
}
−→ E0,⊥

T,ξ

be the uniquely determined extensions of D
(1)
T,ξ and D

(4)
T,ξ, respectively. Using Propo-

sition 3.5 and proceeding as in the proof of [6, Proposition 3.5], one sees that for

T large enough, D
(1)
APS,T,ξ and D

(4)
APS,T,ξ are both self-adjoint Fredholm operators.

Furthermore, we deduce that for T large enough, ker(D
(4)
APS,T,ξ) = 0. Thus we get

(3.36) Tr
[
τ
∣∣
ker(DAPS,T,ξ(0))

]
= Tr

[
τ
∣∣
ker(D

(1)
APS,T,ξ)

]
.

On the other hand, for T large enough and u ∈ [0, 1], set

DXH

T,ξ (u) = uDXH

ξ + (1− u) J−1
T,ξ D

(1)
T,ξ JT,ξ ,

BXH

T,ξ (u) = uBXH

ξ + (1− u) J−1
T,ξ,∂ B

(1)
T,ξ JT,ξ,∂ .

(3.37)

From (3.26), one can proceed as in [6, (3.37)-(3.39)] to see that when T is large

enough, BXH

T,ξ (u) is invertible for every u ∈ [0, 1].

We denote by PXH

T,ξ (u) the Atiyah-Patodi-Singer projection associated toBXH

T,ξ (u).

Using (3.26), (3.30) and applying the same gluing argument [4, pp. 115-117] as in
the proof of [6, Proposition 3.5], one sees that when T is large enough and u ∈ [0, 1],

DXH

APS,T,ξ(u) :
{
s ∈ F1

ξ

∣∣PXH

T,ξ (u)(s|∂X) = 0
}
−→ F0

ξ ,

the uniquely determined extensions of DXH

T,ξ (u), form a continuous family of self-
adjoint Fredholm operators. Thus by the homotopy invariance of the index of
Fredholm operators, one gets

(3.38) Tr
[
τ
∣∣
ker(D

XH
APS,T,ξ(0))

]
= Tr

[
τ
∣∣
ker(D

XH
APS,T,ξ(1))

]
= APS-ind

(
DXH

ξ

)
.

From (2.16), (2.17), (3.14) and (3.19), one gets

(3.39) J−1
T,ξ ◦ τ ◦ JT,ξ = (−1)

∑
0<v dimNvτ, where τ = τs or τe .

From (3.33) and (3.35)-(3.39), one sees that (3.34) holds when T is large enough.

In general, dim ker
(
DYH

ξ

)
need not be zero. For any ξ ∈ Z, choose aξ > 0 to be

such that

(3.40) Spec(DYH

ξ ) ∩ [−2aξ, 2aξ] ⊆ {0}.

To control the eigenvalues of BT,ξ near zero, we use the method in [6, Section 4(a)]
to perturb the Dirac operators under consideration.

Let ε > 0 be sufficiently small so that there exists an S1-invariant smooth func-
tion f : X −→ R such that f ≡ 1 on Uε/3 and f ≡ 0 outside of U2ε/3.
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Let DXH

ξ,−aξ
be the Dirac type operator defined by

(3.41) DXH

ξ,−aξ
= DXH

ξ − aξfc

(
∂

∂r

)
,

where for τ = τs (resp. τe), D
XH

ξ,−aξ
is considered as a differential operator acting

on Γ
(
XH , S(TXH ⊕ V R

0 , LF )⊗R+,ξ

)
(resp. Γ

(
XH , S(TXH ⊕ V R

0 , LF )⊗R−,ξ

)
).

By Theorem 2.7, we get

(3.42) APS-ind
(
D

XH,α

ξ,−aξ

)
−APS-ind

(
D

XH,α

ξ

)
= − sf

{
B

XH,α

ξ,+ − aξt
∣∣ 0 ≤ t ≤ 1

}
.

By (3.40), the right hand side of (3.42) is equal to zero.
For any T ∈ R, let DT,−aξ

: Γ(X,S(U,L)⊗W ) −→ Γ(X,S(U,L)⊗W ) be the
Dirac type operator defined by

(3.43) DT,−aξ
= DT − aξfc

(
∂

∂r

)
.

Let DT,ξ,−aξ
be its restriction to the weight-ξ subspace.

Let BXH

ξ,−aξ
be the canonical boundary operator of DXH

ξ,−aξ
in the sense of (2.5).

Since DYH

ξ −aξ, which is the induced operator from BXH

ξ,−aξ
through πXH

, is invert-

ible, by the proof of Theorem 3.9, we get when T is large enough,

(3.44) APS-ind(DT,ξ,−aξ
) =

∑
α

(−1)
∑

0<v dimNv APS-ind
(
D

XH,α

ξ,−aξ

)
.

By Theorem 2.7, we deduce that, for ξ ∈ Z,

(3.45) APS-ind(DT,ξ,−aξ
) ≡ APS-ind(DT,ξ) mod kZ.

From (3.42), (3.44) and (3.45), we get for T large enough,

(3.46) APS-ind(DT,ξ) ≡
∑
α

(−1)
∑

0<v dimNv APS-ind
(
D

XH,α

ξ

)
mod kZ .

On the other hand, by Theorem 2.7, one knows the mod k invariance of
APS-ind(DT,ξ) with respect to T ∈ R. By this and (3.34), (3.46), one gets

(3.47) APS-ind(D, ξ) ≡
∑
α

(−1)
∑

0<v dimNv APS-ind
(
D

XH,α

ξ

)
mod kZ .

By taking τ = τs (resp. τe), we get the first equation of (2.22) (resp. (2.23)).
To get the second equation of (2.22) (resp. (2.23)), we only need to apply the first
equation of (2.22) (resp. (2.23)) to the case where the circle action on X is defined
by the inverse of the original circle action on X.

The proof of Theorem 2.8 is completed.

4. Rigidity and vanishing theorems on Z/k Spin
c
manifolds

In this section, by combining the S1-equivariant index theorem we have estab-
lished in Section 2 with the methods of [20], we prove the rigidity and vanishing
theorems for Z/k Spinc manifolds, which generalize [17, Theorems A and B]. As
will be pointed out in Remark 4.3, when applied to Z/k spin manifolds, our results
provide a resolution to a conjecture of Devoto [7]. Both the statement of the main
results and their proof are inspired by the corresponding results as well as their
proof for closed manifolds in [20, 21]. As explained in Section 2.1, when we regard
the considered Z/k manifold as a quotient space which has the homotopy type of
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a CW complex, by using the splitting principle [12, Chapter 17], we can apply the
topological arguments in [20, 21] in our Z/k context with little modification. Thus
we will only indicate the main steps of the proof of our results.

This section is organized as follows. In Section 4.1, we state our main results,
the rigidity and vanishing theorems for Z/k Spinc manifolds. In Section 4.2, we
present two recursive formulas which will be used to prove our main results stated
in Section 4.1. In Section 4.3, we prove the rigidity and vanishing theorems for Z/k
Spinc manifolds.

4.1. Rigidity and vanishing theorems. Let X be a 2l-dimensional Z/k mani-
fold, which admits a nontrivial Z/k circle action. We assume that TX has a Z/k
S1-equivariant Spinc structure. Let V be an even dimensional Z/k real vector bun-
dle over X. We assume that V has a Z/k S1-equivariant spin structure. Let W be
a Z/k S1-equivariant complex vector bundle of rank r over X. Let KW = det(W )
be the determinant line bundle of W , which is obviously a Z/k complex line bundle.

Let KX be the Z/k complex line bundle over X induced by the Spinc structure
of TX. Let S(TX,KX) be the complex spinor bundle of (TX,KX) as in Section
2.1. Let S(V ) = S+(V )⊕ S−(V ) be the spinor bundle of V .

Let K(X) be the K-group of Z/k complex vector bundles over X (cf. [8, p. 285]).
We define the following elements in K(X)[[q1/2]] (cf. [20, (2.1)]):

R1(V ) =
(
S+(V ) + S−(V )

)
⊗

∞⊗
n=1

Λqn(V ) ,

R2(V ) =
(
S+(V )− S−(V )

)
⊗

∞⊗
n=1

Λ−qn(V ) ,

R3(V ) =

∞⊗
n=1

Λ−qn−1/2(V ) ,

R4(V ) =
∞⊗

n=1

Λqn−1/2(V ) .

(4.1)

For N ∈ N, let y = e2πi/N ∈ C be an N -th root of unity. Set

(4.2) Qy(W ) =
∞⊗

n=0

Λ−y−1·qn(W )⊗
∞⊗

n=1

Λ−y·qn(W ) ∈ K(X)[[q]] .

Then there exist Q�(W ) ∈ K(X)[[q]], 0 ≤ � < N , such that

(4.3) Qy(W ) =

N−1∑
�=0

y�Q�(W ).

LetH∗
S1(X,Z) = H∗(X×S1ES1,Z) denote the S1-equivariant cohomology group

of X, where ES1 is the universal S1-principal bundle over the classifying space
BS1 of S1. So H∗

S1(X,Z) is a module over H∗(BS1,Z) induced by the projection
π : X ×S1 ES1 → BS1. Let p1(·)S1 and ω2(·)S1 denote the first S1-equivariant
pontrjagin class and the second S1-equivariant Stiefel-Whitney class, respectively.
As V ×S1 ES1 is spin over X ×S1 ES1, one knows that 1

2p1(V )S1 is well defined in
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H∗
S1(X,Z) (cf. [26, pp. 456-457]). Recall that

(4.4) H∗(BS1,Z) = Z[[u]]

with u a generator of degree 2.
In the following, we denote by DX ⊗R the twisted Spinc Dirac operator acting

on S(TX,KX) ⊗ R (cf. Definition 2.3). Furthermore, for m ∈ 1
2Z, h ∈ Z and

R(q) =
∑

m∈ 1
2Z

qmRm ∈ KS1(X)[[q1/2]], we will also denote APS-ind(DX ⊗Rm, h)

(cf. (2.9)) by APS-ind(DX ⊗R(q),m, h).
Now we can state the main results of this paper as follows, which generalize

[17, Theorems A and B] to the case of Z/k Spinc manifolds.

Theorem 4.1. Assume that ω2(W )S1 = ω2(TX)S1 , 1
2p1(V +W−TX)S1 = e·π∗u2

(e ∈ Z) in H∗
S1(X,Z), and c1(W ) = 0 mod (N). For 0 ≤ � < N , i = 1, 2, 3, 4,

consider the S1-equivariant twisted Spinc Dirac operators

(4.5) DX ⊗ (KW ⊗K−1
X )1/2 ⊗

∞⊗
n=1

Symqn(TX)⊗Ri(V )⊗Q�(W ) .

(i) If e = 0, then these operators are rigid in Z/k category.
(ii) If e < 0, then they have vanishing properties in Z/k category.

Remark 4.2 (Compare with [20, Remark 2.1]). As ω2(W )S1 = ω2(TX)S1 ,
c1(KW ⊗ K−1

X )S1 = 0 mod (2). We note that in our case, X ×S1 ES1 has the
homotopy type of a CW complex [22]. By [10, Corollary 1.2], the circle action
on X can be lifted to (KW ⊗K−1

X )1/2 and is compatible with the circle action on

KW ⊗K−1
X .

Remark 4.3. If X is a Z/k spin manifold, by taking V = TX, W = 0 and i = 3 in
Theorem 4.1, then the S1-equivariant twisted spin Dirac operators

(4.6) DX ⊗
∞⊗

n=1

Symqn(TX)⊗
∞⊗

n=1

Λ−qn−1/2(TX)

are rigid in Z/k category. This is exactly the Devoto conjecture [7].

Actually, as in [20], our proof of Theorem 4.1 works under the following slightly
weaker hypothesis. Let us first explain some notation.

For each n > 1, consider Zn ⊂ S1, the cyclic subgroup of order n. We have the
Zn-equivariant cohomology of X defined by H∗

Zn
(X,Z) = H∗(X ×Zn

ES1,Z), and

there is a natural “forgetful” map α(S1,Zn) : X ×Zn
ES1 → X ×S1 ES1 which

induces a pullback α(S1,Zn)
∗ : H∗

S1(X,Z) → H∗
Zn

(X,Z). We denote by α(S1, 1)

the arrow which forgets the S1-action. Thus α(S1, 1)∗ : H∗
S1(X,Z) → H∗(X,Z) is

induced by the inclusion of X into X ×S1 ES1 as a fiber over BS1.
Finally, note that if Zn acts trivially on a space M , then there is a new arrow

t∗ : H∗(M,Z) → H∗
Zn

(M,Z) induced by the projection t : M ×Zn
ES1 = M ×

BZn → M .
Let Z∞ = S1. For each 1 < n ≤ +∞, let i : X(n) → X be the inclusion of the

fixed point set of Zn ⊂ S1 in X, and so i induces iS1 : X(n)×S1ES1 → X×S1 ES1.
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In the rest of this paper, we use the same assumption as in [20, (2.4)]. Suppose
that there exists some integer e ∈ Z such that for 1 < n ≤ +∞,

α(S1,Zn)
∗ ◦ i∗S1

( 1

2
p1(V +W − TX)S1 − e · π∗u2

)
= t∗ ◦ α(S1, 1)∗ ◦ i∗S1

( 1

2
p1(V +W − TX)S1

)
.

(4.7)

Remark that the relation (4.7) clearly follows from the hypothesis of Theorem
4.1 by pulling back and forgetting. Thus it is a weaker hypothesis.

Let Gy be the multiplicative group generated by y. Following Witten [27], we

consider the action of y0 ∈ Gy on W (resp. W ) by multiplication by y0 (resp. y−1
0 )

on W (resp. W ). Set

(4.8) Q(W ) =

∞⊗
n=0

Λ−qn(W )⊗
∞⊗

n=1

Λ−qn(W ) ∈ K(X)[[q]] .

Then the actions of Gy on W and W naturally induce the action of Gy on Q(W ).
Clearly, y ·Q(W ) = Qy(W ). By (4.3), we know that for 0 ≤ � < N ,

(4.9) y0 ·Q�(W ) = y�0Q�(W ), where y0 ∈ Gy.

In what follows, for m ∈ 1
2Z, 0 ≤ � < N , h ∈ Z and R(q) ∈ KS1(X)[[q1/2]], we

will denote APS-ind(DX ⊗R(q)⊗Q�(W ),m, h) by

APS-ind(DX ⊗R(q)⊗Q(W ),m, �, h).

We can now state a slightly more general version of Theorem 4.1.

Theorem 4.4. Under the hypothesis (4.7), consider the S1×Gy-equivariant twisted
Spinc Dirac operators

(4.10) DX ⊗ (KW ⊗K−1
X )1/2 ⊗

∞⊗
n=1

Symqn(TX)⊗Ri(V )⊗Q(W ) .

(i) If e = 0, for m ∈ 1
2Z, h ∈ Z, h �= 0, 0 ≤ � < N , one has

APS-ind
(
DX ⊗ (KW ⊗K−1

X )1/2 ⊗
∞⊗

n=1

Symqn(TX)

⊗Ri(V )⊗Q(W ),m, �, h
)
≡ 0 mod kZ .

(4.11)

(ii) If e < 0, for m ∈ 1
2Z, h ∈ Z, 0 ≤ � < N , one has

APS-ind
(
DX ⊗ (KW ⊗K−1

X )1/2 ⊗
∞⊗

n=1

Symqn(TX)

⊗Ri(V )⊗Q(W ),m, �, h
)
≡ 0 mod kZ .

(4.12)

In particular, one has

APS-ind
(
DX ⊗ (KW ⊗K−1

X )1/2 ⊗
∞⊗

n=1

Symqn(TX)

⊗Ri(V )⊗Q(W ),m, �
)
≡ 0 mod kZ .

(4.13)

The rest of this paper is devoted to a proof of Theorem 4.4.
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4.2. Two recursive formulas. Recall that XH = {XH,α} is the fixed point set
of the circle action. As in [20, (2.5)-(2.6)], we may and we will assume that

TX|XH
= TXH ⊕

⊕
v>0

Nv,

TX|XH
⊗R C = TXH ⊗R C⊕

⊕
v>0

(
Nv ⊕Nv

)
,

V |XH
= V R

0 ⊕
⊕
v>0

Vv , W |XH
=

⊕
v

Wv ,

(4.14)

where Nv, Vv, Wv are Z/k complex vector bundles on which S1 acts by sending g
to gv, and V R

0 is a real vector bundle on which S1 acts as identity.
By (4.14), as in (2.16) and (2.17), there is a natural Z/k isomorphism between

the Z2-graded C(TX)-Clifford modules over XH :

(4.15) S(TX,KX)|XH
� S

(
TXH ,KX ⊗

⊗
v>0

(detNv)
−1

)
⊗̂

⊗̂
v>0

ΛNv .

For a Z/k complex vector bundle R over XH , let DXH ⊗ R, DXH,α ⊗ R be the
twisted Spinc Dirac operators on S(TXH ,KX ⊗

⊗
v>0(detNv)

−1) ⊗ R over XH ,
XH,α, respectively (cf. Definition 2.3).

As in [20, (2.8)], we introduce the following locally constant functions on XH :

e(N) =
∑
v>0

v2 dimNv , d′(N) =
∑
v>0

v dimNv ,

e(V ) =
∑
v>0

v2 dimVv , d′(V ) =
∑
v>0

v dimVv ,

e(W ) =
∑
v

v2 dimWv , d′(W ) =
∑
v

v dimWv .

(4.16)

Furthermore, we write, on XH (cf. [20, (2.9)]),

L(N) =
⊗
v>0

(detNv)
v , L(V ) =

⊗
v>0

(detVv)
v ,

L(W ) =
⊗
v �=0

(detWv)
v , L = L(N)−1 ⊗ L(V )⊗ L(W ) .

(4.17)

Take Z∞ = S1 in hypothesis (4.7). By using the splitting principle [12, Chapter
17] and computing as in [20, (2.10)-(2.11)], we get

(4.18) c1(L) = 0, e(V ) + e(W )− e(N) = 2e.

From Remark 2.2 and (4.18), one knows L is a trivial Z/k complex line bundle over
each component XH,α of XH , and S1 acts on L by sending g to g2e, and Gy acts

on L by sending y to yd
′(W ).

Recall that c1(W ) = 0 mod (N). Then by [11, Section 8] and the proof of
[20, Lemma 2.1], d′(W ) mod(N) is constant on each connected component XH,α of
XH . Thus, we can extend L to a trivial Z/k complex line bundle over X, and we
extend the circle action on it by sending g on the canonical section 1 of L to g2e · 1,
and Gy acts on L by sending y to yd

′(W ).
For i = 1, 2, 3, 4, we set

(4.19) Ri = (KW ⊗K−1
X )1/2 ⊗Ri(V )⊗Q(W ).
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Then by Theorem 2.8, we can express the global Atiyah-Patodi-Singer index via
the Atiyah-Patodi-Singer indices on the fixed point set up to kZ.

Proposition 4.5 (Compare with [20, Proposition 2.1]). For m ∈ 1
2Z, h ∈ Z,

1 ≤ i ≤ 4, 0 ≤ � < N , we have

APS-ind
(
DX ⊗

∞⊗
n=1

Symqn(TX)⊗Ri,m, �, h
)

≡
∑
α

(−1)
∑

v>0 dimNv APS-ind
(
DXH,α ⊗

∞⊗
n=1

Symqn(TX|XH
)⊗Ri

⊗ Sym (
⊕
v>0

Nv)⊗
⊗
v>0

detNv,m, �, h
)

mod kZ .

(4.20)

To simplify the notation, we use the same convention as in [20, p. 945]. For

n0 ∈ N∗, we define a number operator P on KS1(X)[[q
1
n0 ]] in the following way:

if R(q) =
⊕

n∈ 1
n0

Z
Rnq

n ∈ KS1(X)[[q
1
n0 ]], then P acts on R(q) by multiplication

by n on Rn. From now on, we simply denote Symqn(TX), Λqn(V ) and Λqn(W ) by
Sym(TXn), Λ(Vn) and Λ(Wn), respectively. In this way, P acts on TXn, Vn and
Wn by multiplication by n, and the actions of P on Sym(TXn), Λ(Vn) and Λ(Wn)
are naturally induced by the corresponding actions of P on TXn, Vn and Wn. So
the eigenspace of P = n is just given by the coefficient of qn of the corresponding

element R(q). For R(q) =
⊕

n∈ 1
n0

Z
Rnq

n ∈ KS1(X)[[q
1
n0 ]], we will also denote

APS-ind
(
DX ⊗Rm, h

)
by APS-ind

(
DX ⊗ R(q),m, h

)
.

For p ∈ N, we introduce the following elements in KS1(XH)[[q]] (cf. [20, (2.14),
(3.6)]):

Fp(X) =
∞⊗

n=1

Sym(TXH,n)⊗
⊗
v>0

( ∞⊗
n=1

Sym (Nv,n)⊗
⊗
n>pv

Sym (Nv,n)
)
,

F ′
p(X) =

⊗
v>0

⊗
0≤n≤pv

(
Sym (Nv,−n)⊗ detNv

)
,

F−p(X) = Fp(X)⊗F ′
p(X) .

(4.21)

Then from (4.14) and (4.21), over XH , one has (cf. [20, (2.15)])

(4.22) F0(X) =

∞⊗
n=1

Symqn(TX|XH
)⊗ Sym(

⊕
v>0

Nv)⊗
⊗
v>0

detNv .

We now state two intermediate results on the relations between the family indices
on the fixed point set. These two recursive formulas will be used in our proof of
Theorem 4.4 in the next subsection.

Theorem 4.6 (Compare with [20, Theorem 2.4]). For each α, 1 ≤ i ≤ 4, m ∈ 1
2Z,

1 ≤ � < N , h, p ∈ Z, p > 0, the following identity holds:

APS-ind
(
DXH,α ⊗F−p(X)⊗Ri,m+

1

2
p2e(N) +

p

2
d′(N), �, h

)
(4.23)

= (−1)pd
′(W ) APS-ind

(
DXH,α ⊗F0(X)⊗Ri ⊗ L−p,m+ ph+ p2e, �, h

)
.

Proof. The proof will be presented in Section 5.1.
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Theorem 4.7 (Compare with [20, Theorem 2.3]). For 1 ≤ i ≤ 4, m ∈ 1
2Z,

1 ≤ � < N , h, p ∈ Z, p > 0, we have the following identity:∑
α

(−1)
∑

v>0 dimNv APS-ind
(
DXH,α ⊗F0(X)⊗Ri,m, �, h

)
≡

∑
α

(−1)pd
′(N)+

∑
v>0 dimNv APS-ind

(
DXH,α ⊗F−p(X)⊗Ri,

m+ 1
2p

2e(N) + p
2d

′(N), �, h
)

mod kZ .

(4.24)

Proof. The proof will be presented in Sections 5.2-5.4.

4.3. A proof of Theorem 4.4. As 1
2p1(TX −W )S1 ∈ H∗

S1(X,Z) is well defined,
one has the same identity as in [20, (2.27)],

(4.25) d′(N) + d′(W ) ≡ 0 mod (2).

From (4.22), (4.25), Proposition 4.5 and Theorems 4.6, 4.7, for 1 ≤ i ≤ 4,
m ∈ 1

2Z, 1 ≤ � < N , h, p ∈ Z, p > 0, we get the following identity (compare with
[20, (2.28)]):

APS-ind
(
DX ⊗

∞⊗
n=1

Symqn(TX)⊗Ri,m, �, h
)

(4.26)

≡ APS-ind
(
DX ⊗

∞⊗
n=1

Symqn(TX)⊗Ri ⊗ L−p,m′, �, h
)

mod kZ ,

with

(4.27) m′ = m+ ph+ p2e.

By (4.1), (4.2), if m < 0 or m′ < 0, then either side of (4.26) is identically zero,
which completes the proof of Theorem 4.4. In fact,

(i) Assume that e = 0. Let h ∈ Z, m0 ∈ 1
2Z, h �= 0 be fixed. If h > 0, we take

m′ = m0; then for p large enough, we get m < 0 in (4.26). If h < 0, we take
m = m0; then for p large enough, we get m′ < 0 in (4.26).

(ii) Assume that e < 0. For h ∈ Z, m0 ∈ 1
2Z, we take m = m0; then for p large

enough, we get m′ < 0 in (4.26).

The proof of Theorem 4.4 is completed.

5. Proofs of Theorems 4.6 and 4.7

In this section, following [20, Sections 3, 4], we prove those two recursive formulas
which are stated in Section 4.2.

This section is organized as follows. In Section 5.1, by modifying the process in
[20, Section 3.2], we present a proof of Theorem 4.6. In Section 5.2, we introduce the
same refined shift operators as in [20, Section 4.2]. In Section 5.3, we construct the
twisted Spinc Dirac operator on X(nj), the fixed point set of the naturally induced
Znj

-action on X. In Section 5.4, by applying the mod k localization formula in
Theorem 2.8, we prove Theorem 4.7.
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5.1. A proof of Theorem 4.6. Recall thatH is the canonical basis of Lie(S1) = R

and H is the corresponding Killing vector field on X. On the fixed point XH , let JH

denote the operator which computes the weight of the S1 action on Γ(XH , E|XH
)

for any Z/k S1-equivariant vector bundle E over X. Then JH can be explicitly
given by (cf. [21, (3.2)])

(5.1) JH =
1

2π
√
−1

LH

∣∣
Γ(XH ,E|XH

)
,

where LH denotes the infinitesimal action of H acting on Γ(X,E).
Recall that the Z2-grading on S(TX,KX)⊗

⊗∞
n=1 Sym(TXn) (resp. S(TXH ,KX

⊗
⊗

v>0(detNv)
−1)⊗ F0(X) ) is induced by the Z2-grading on S(TX,KX) (resp.

S(TXH ,KX ⊗
⊗

v>0(detNv)
−1)). Write

F 1
V = S(V )⊗

∞⊗
n=1

Λ(Vn) ,

F 2
V =

⊗
n∈N+ 1

2

Λ(Vn) ,

Q1(W ) =
∞⊗

n=0

Λ(Wn)⊗
∞⊗

n=1

Λ(Wn) .

(5.2)

There are two natural Z2-gradings on F 1
V , F

2
V (resp. Q1(W )). The first grading

is induced by the Z2-grading of S(V ) and the forms of homogeneous degrees in⊗∞
n=1 Λ(Vn),

⊗
n∈N+ 1

2
Λ(Vn) (resp. Q1(W )). We define τe|F i±

V
= ±1 (i = 1, 2)

(resp. τ1|Q1(W )± = ±1) to be the involution defined by this Z2-grading. The second

grading is the one for which F i
V (i = 1, 2) are purely even, i.e., F i+

V = F i
V . We

denote by τs = id the involution defined by this Z2-grading. Then the coefficient
of qn (n ∈ 1

2Z) in (4.1) of R1(V ) (resp. R2(V ), R3(V ), R4(V ), Q(W )) is exactly

the Z2-graded Z/k vector subbundle of (F 1
V , τs) (resp. (F 1

V , τe), (F
2
V , τe), (F

2
V , τs),

(Q1(W ), τ1)), on which P acts by multiplication by n.
Furthermore, we denote by τe (resp. τs) the Z2-grading on S(TX,KX) ⊗⊗∞
n=1 Sym(TXn)⊗F i

V (i = 1, 2) induced by the above Z2-gradings. We will denote
by τe1 (resp. τs1) the Z2-grading on S(TX,KX)⊗

⊗∞
n=1 Sym(TXn)⊗F i

V ⊗Q1(W )
(i = 1, 2) defined by

(5.3) τe1 = τe⊗̂τ1 , τs1 = τs⊗̂τ1 .

We still denote by τe1 (resp. τs1) the Z2-grading on S(TXH ,KX⊗
⊗

v>0(detNv)
−1)

⊗F−p(X)⊗ F i
V ⊗Q1(W ) (p ∈ N, i = 1, 2) which is induced as in (5.3).

By (4.14), as in (4.15), there is a natural Z/k isomorphism between the Z2-graded
C(V )-Clifford modules over XH ,

(5.4) S(V )|XH
� S

(
V R

0 ,
⊗
v>0

(detVv)
−1

)
⊗

⊗̂
v>0

ΛVv .
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Let V0 = V R
0 ⊗R C. Using (4.14) and (5.4), we rewrite (5.2) on the fixed point

set XH as follows:

F 1
V =

∞⊗
n=1

Λ
(
V0,n ⊕

⊕
v>0

(Vv,n ⊕ V v,n)
)

⊗ S
(
V R

0 ,
⊗
v>0

(detVv)
−1

)
⊗

⊗
v>0

ΛVv,0 ,

F 2
V =

⊗
n∈N+ 1

2

Λ
(
V0,n ⊕

⊕
v>0

(Vv,n ⊕ V v,n)
)
,

Q1(W ) =
∞⊗

n=0

Λ(
⊕
v

W v,n)⊗
∞⊗

n=1

Λ(
⊕
v

Wv,n) .

(5.5)

We can reformulate Theorem 4.6 as follows.

Theorem 5.1 (Compare with [20, Theorem 3.1]). For each α, i = 1, 2, τ = τe1 or
τs1, m ∈ 1

2Z, 1 ≤ � < N , h, p ∈ Z, p > 0, the following identity holds:

APS-indτ

(
DXH,α ⊗ (KW ⊗K−1

X )1/2 ⊗F−p(X)

⊗ F i
V ⊗Q1(W ),m+

1

2
p2e(N) +

p

2
d′(N), �, h

)
= (−1)pd

′(W ) APS-indτ

(
DXH,α ⊗ (KW ⊗K−1

X )1/2 ⊗ F0(X)

⊗ F i
V ⊗Q1(W )⊗ L−p,m+ ph+ p2e, �, h

)
.

(5.6)

We introduce the same shift operators as in [20, Section 3.2], which follows [26]
in spirit. For p ∈ N, we set

r∗ : Nv,n → Nv,n+pv , r∗ : Nv,n → Nv,n−pv ,

r∗ : Vv,n → Vv,n+pv , r∗ : V v,n → V v,n−pv ,

r∗ : Wv,n → Wv,n+pv , r∗ : W v,n → W v,n−pv .

(5.7)

Using the similar Z/k S1-equivariant isomorphism of complex vector bundles as
in [21, (3.14)] and the similar Z/k Gy × S1-equivariant isomorphism of complex
vector bundles as in [20, (3.15) and (3.16)], one deduces the following propositions
by direct calculation.

Proposition 5.2 (Compare with [20, Proposition 3.1]). For p ∈ Z, p > 0, i = 1,
2, there are natural Z/k isomorphisms of vector bundles over XH ,

(5.8) r∗(F−p(X)) � F0(X)⊗ L(N)p , r∗(F
i
V ) � F i

V ⊗ L(V )p .

For any p ∈ Z, p > 0, there is a natural Z/k Gy × S1-equivariant isomorphism of
vector bundles over XH ,

(5.9) r∗(Q
1(W )) � Q1(W )⊗ L(W )−p.
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Proposition 5.3 (Compare with [20, Proposition 3.2]). For p ∈ Z, p > 0, i = 1, 2,
the Z/k Gy-equivariant isomorphism of vector bundles over XH induced by (5.8),
(5.9),

r∗ : S(TXH ,KX ⊗
⊗
v>0

(detNv)
−1)⊗ (KW ⊗K−1

X )1/2

⊗ F−p(X)⊗ F i
V ⊗Q1(W )

−→ S(TXH ,KX ⊗
⊗
v>0

(detNv)
−1)⊗ (KW ⊗K−1

X )1/2

⊗ F0(X)⊗ F i
V ⊗Q1(W )⊗ L−p ,

(5.10)

verifies the following identities:

r−1
∗ · JH · r∗ = JH ,

r−1
∗ · P · r∗ = P + pJH + p2e− 1

2
p2e(N)− p

2
d′(N) .

(5.11)

For the Z2-gradings, we have

(5.12) r−1
∗ τer∗ = τe , r−1

∗ τsr∗ = τs , r−1
∗ τ1r∗ = (−1)pd

′(W )τ1 .

Theorem 5.1 is a direct consequence of Propositions 5.2 and 5.3.

5.2. The refined shift operators. We first introduce a partition of [0, 1] as in
[20, pp. 942–943]. Set J =

{
v ∈ N

∣∣ there exists α such that Nv �= 0 on XH,α

}
and

(5.13) Φ =
{
β ∈ (0, 1]

∣∣ there exists v ∈ J such that βv ∈ Z
}
.

We order the elements in Φ so that Φ =
{
βi

∣∣ 1 ≤ i ≤ J0, J0 ∈ N and βi < βi+1

}
.

Then for any integer 1 ≤ i ≤ J0, there exist pi, ni ∈ N, 0 < pi ≤ ni, with (pi, ni) = 1
such that

(5.14) βi = pi/ni .

Clearly, βJ0
= 1. We also set p0 = 0 and β0 = 0.

For 0 ≤ j ≤ J0, p ∈ N∗, we write

Ipj =
{
(v, n) ∈ N× N

∣∣∣ v ∈ J, (p− 1)v < n ≤ pv, n
v = p− 1 +

pj

nj

}
,

I
p

j =
{
(v, n) ∈ N× N

∣∣∣ v ∈ J, (p− 1)v < n ≤ pv, n
v > p− 1 +

pj

nj

}
.

(5.15)

Clearly, Ip0 = ∅, the empty set. We define Fp,j(X) as in [20, (2.21)], which are
analogous with (4.21). More specifically, we set

Fp,j(X) =
∞⊗

n=1

Sym (TXH,n)⊗
⊗
v>0

( ∞⊗
n=1

Sym (Nv,n)

(5.16)

⊗
⊗

n>(p−1)v+
pj
nj

v

Sym (Nv,n)
)
⊗

⊗
v>0,

0≤n≤(p−1)v+

[
pj
nj

v

]
(
Sym (Nv,−n)⊗ detNv

)

= Fp(X)⊗F ′
p−1(X)⊗

⊗
(v,n)∈∪j

i=0I
p
i

(
Sym (Nv,−n)⊗ detNv

)
⊗

⊗
(v,n)∈I

p
j

Sym(Nv,n) ,
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where we use the notation that for s ∈ R, [s] denotes the greatest integer which is
less than or equal to s. Then

(5.17) Fp,0(X) = F−p+1(X) , Fp,J0
(X) = F−p(X) .

From the construction of βi, we know that for v ∈ J , there is no integer in( pj−1

nj−1
v,

pj

nj
v
)
. Furthermore (cf. [20, (4.24)]),

[ pj−1

nj−1
v
]
=

[ pj
nj

v
]
− 1 if v ≡ 0 mod (nj) ,[ pj−1

nj−1
v
]
=

[ pj
nj

v
]

if v �≡ 0 mod (nj) .
(5.18)

We use the same shift operators rj∗, 1 ≤ j ≤ J0, as in [20, (4.21)], which refine
the shift operator r∗ defined in (5.7). For p ∈ N∗, set

rj∗ : Nv,n → Nv,n+(p−1)v+pjv/nj
, rj∗ : Nv,n → Nv,n−(p−1)v−pjv/nj

,

rj∗ : Vv,n → Vv,n+(p−1)v+pjv/nj
, rj∗ : V v,n → V v,n−(p−1)v−pjv/nj

,

rj∗ : Wv,n → Wv,n+(p−1)v+pjv/nj
, rj∗ : W v,n → W v,n−(p−1)v−pjv/nj

.

(5.19)

For 1 ≤ j ≤ J0, we define F(βj), F
1
V (βj), F

2
V (βj) and QW (βj) over XH as in

[20, (4.13)]:

F(βj) =
⊗

0<n∈Z

Sym (TXH,n)⊗
⊗
v>0,

v≡0,
nj
2

mod(nj)

⊗
0<n∈Z+

pj
nj

v

Sym (Nv,n ⊕Nv,n)

(5.20)

⊗
⊗

0<v′<nj/2

Sym

( ⊕
v≡v′,−v′ mod(nj)

( ⊕
0<n∈Z+

pj
nj

v

Nv,n ⊕
⊕

0<n∈Z−
pj

nj
v

Nv,n

) )
,

F 1
V (βj) = Λ

( ⊕
0<n∈Z

V0,n ⊕
⊕
v>0,

v≡0,
nj
2

mod(nj)

( ⊕
0<n∈Z+

pj
nj

v

Vv,n ⊕
⊕

0<n∈Z− pj
nj

v

V v,n

)(5.21)

⊕
⊕

0<v′<nj/2

( ⊕
v≡v′,−v′ mod(nj)

( ⊕
0<n∈Z+

pj
nj

v

Vv,n ⊕
⊕

0<n∈Z− pj
nj

v

V v,n

)))
,
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F 2
V (βj) = Λ

( ⊕
0<n∈Z+ 1

2

V0,n ⊕
⊕
v>0,

v≡0,
nj
2

mod(nj)

( ⊕
0<n∈Z+

pj

nj
v+

1
2

Vv,n

(5.22)

⊕
⊕

0<n∈Z−
pj

nj
v+

1
2

V v,n

)

⊕
⊕

0<v′<nj/2

( ⊕
v≡v′,−v′ mod(nj)

( ⊕
0<n∈Z+

pj

nj
v+

1
2

Vv,n ⊕
⊕

0<n∈Z−
pj

nj
v+

1
2

V v,n

)))
,

QW (βj) = Λ

( ⊕
v

( ⊕
0<n∈Z+

pj

nj
v

Wv,n ⊕
⊕

0≤n∈Z−
pj

nj
v

W v,n

))
.

(5.23)

Using (5.18), (5.19) and computing directly, we get an analogue of Proposition
5.2 as follows.

Proposition 5.4 (Compare with [20, Proposition 4.1]). There are natural Z/k
isomorphisms of vector bundles over XH :

rj∗(Fp,j−1(X)) � F(βj)⊗
⊗

v>0, v≡0 mod (nj)

Sym (Nv,0)

⊗
⊗
v>0

(detNv)

[
pj
nj

v
]
+(p−1)v+1 ⊗

⊗
v>0, v≡0 mod (nj)

(detNv)
−1 ,

rj∗(Fp,j(X)) � F(βj)⊗
⊗

v>0, v≡0 mod (nj)

Sym(Nv,0)

⊗
⊗
v>0

(detNv)

[
pj
nj

v
]
+(p−1)v+1

,

rj∗(F
1
V ) � S

(
V R

0 ,
⊗
v>0

(detVv)
−1

)
⊗ F 1

V (βj)

⊗
⊗

v>0, v≡0 mod (nj)

Λ(Vv,0)⊗
⊗
v>0

(detV v)

[
pj
nj

v
]
+(p−1)v

,

rj∗(F
2
V ) � F 2

V (βj)⊗
⊗

v>0, v≡nj
2 mod (nj)

Λ(Vv,0)⊗
⊗
v>0

(detV v)

[
pj
nj

v+
1
2

]
+(p−1)v

.

There is a natural Z/k Gy × S1-equivariant isomorphism of vector bundles over
XH ,

rj∗(Q
1(W )) � QW (βj)⊗

⊗
v>0

(detW v)

[
pj
nj

v
]
+(p−1)v+1

⊗
⊗

v>0, v≡0 mod (nj)

(detW v)
−1 ⊗

⊗
v<0

(detWv)

[
− pj

nj
v
]
−(p−1)v

.
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5.3. The Spinc Dirac operators on X(nj). Recall that there is a nontrivial Z/k
circle action on X which can be lifted to the Z/k circle actions on V and W .

For n ∈ N∗, let Zn ⊂ S1 denote the cyclic subgroup of order n. Let X(nj) be the
fixed point set of the induced Znj

action on X. Let N(nj) → X(nj) be the normal
bundle to X(nj) in X. As in [5, p. 151] (see also [20, Section 4.1], [21, Section 4.1]
or [26]), we see that N(nj) and V can be decomposed, as Z/k real vector bundles
over X(nj), into

N(nj) =
⊕

0<v<nj/2

N(nj)v ⊕N(nj)
R

nj/2
,

V |X(nj) = V (nj)
R

0 ⊕
⊕

0<v<nj/2

V (nj)v ⊕ V (nj)
R

nj/2
,

(5.24)

where V (nj)
R
0 is the Z/k real vector bundle on which Znj

acts by identity, and

N(nj)
R

nj/2
(resp. V (nj)

R

nj/2
) is defined to be zero if nj is odd. Moreover, for

0 < v < nj/2, N(nj)v (resp. V (nj)v) admits a unique Z/k complex structure such
thatN(nj)v (resp. V (nj)v) becomes a Z/k complex vector bundle on which g ∈ Znj

acts by gv. We also denote by V (nj)0, V (nj)nj/2 and N(nj)nj/2 the corresponding

complexification of V (nj)
R
0 , V (nj)

R

nj/2
and N(nj)

R

nj/2
.

Similarly, we also have the following Znj
-equivariant decomposition of W , as

Z/k complex vector bundles over X(nj):

(5.25) W |X(nj) =
⊕

0≤v<nj

W (nj)v ,

where for 0 ≤ v < nj , g ∈ Znj
acts on W (nj)v by sending g to gv.

By [20, Lemma 4.1] (which generalizes [5, Lemmas 9.4 and 10.1] and [26, Lemma
5.1]), we know that the Z/k vector bundles TX(nj) and V (nj)

R
0 are orientable and

even dimensional. Thus N(nj) is orientable over X(nj). By (5.24), V (nj)
R

nj/2
and

N(nj)
R

nj/2
are also orientable and even dimensional. In what follows, we fix the

orientations of N(nj)
R

nj/2
and V (nj)

R

nj/2
. Then TX(nj) and V (nj)

R
0 are naturally

oriented by (5.24) and the orientations of TX, V , N(nj)
R

nj/2
and V (nj)

R

nj/2
.

By (4.14), (5.24) and (5.25), upon restriction toXH , we get the following identifi-
cations of Z/k complex vector bundles (cf. [20, (4.9) and (4.12)]): for 0 < v ≤ nj/2,

N(nj)v =
⊕

v′>0, v′≡vmod(nj)

Nv′ ⊕
⊕

v′>0, v′≡−vmod(nj)

Nv′ ,

V (nj)v =
⊕

v′>0, v′≡vmod(nj)

Vv′ ⊕
⊕

v′>0, v′≡−vmod(nj)

V v′ ,
(5.26)

for 0 ≤ v < nj ,

(5.27) W (nj)v =
⊕

v′≡vmod(nj)

Wv′ .
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Also we get the following identifications of Z/k real vector bundles over XH (cf.
[20, (4.11)]):

TX(nj)|XH
= TXH ⊕

⊕
v>0,

v≡0mod (nj )

Nv , N(nj)
R

nj/2

∣∣∣
XH

=
⊕

v>0, v≡nj
2 mod (nj)

Nv ,

V (nj)
R

0 |XH
= V R

0 ⊕
⊕
v>0,

v≡0mod(nj )

Vv , V (nj)
R

nj/2

∣∣∣
XH

=
⊕
v>0,

v≡
nj
2

mod(nj)

Vv .

Moreover, we have the identifications of Z/k complex vector bundles over XH as
follows:

TX(nj)⊗R C = TXH ⊗R C⊕
⊕

v>0, v≡0mod(nj)

(Nv ⊕Nv) ,

V (nj)0 = V R

0 ⊗R C⊕
⊕

v>0, v≡0mod(nj)

(Vv ⊕ V v) .
(5.28)

As (pj , nj) = 1, we know that, for v ∈ Z, pjv/nj ∈ Z if and only if v/nj ∈
Z. Also, pjv/nj ∈ Z + 1

2 if and only if v/nj ∈ Z + 1
2 . We remark that if v ≡

−v′ mod(nj), then {n | 0 < n ∈ Z +
pj

nj
v} = {n | 0 < n ∈ Z − pj

nj
v′}. Using the

identifications (5.26), (5.27) and (5.28), we can rewrite F(βj), F
1
V (βj), F

2
V (βj) and

QW (βj) over XH defined in (5.20)-(5.23) as follows (cf. [20, (4.7)]):

F(βj) =
⊗

0<n∈Z

Sym
(
TX(nj)n

)
⊗

⊗
0<v<nj/2

Sym
( ⊕
0<n∈Z+

pj
nj

v

N(nj)v,n

⊕
⊕

0<n∈Z− pj
nj

v

N(nj)v,n

)
⊕

⊕
0<n∈Z+ 1

2

Sym
(
N(nj)nj/2,n

)
,

(5.29)

F 1
V (βj) = Λ

( ⊕
0<n∈Z

V (nj)0,n ⊕
⊕

0<v<nj/2

( ⊕
0<n∈Z+

pj
nj

v

V (nj)v,n

⊕
⊕

0<n∈Z− pj
nj

v

V (nj)v,n

)
⊕

⊕
0<n∈Z+ 1

2

V (nj)nj/2,n

)
,

(5.30)

F 2
V (βj) = Λ

( ⊕
0<n∈Z

V (nj)nj/2,n ⊕
⊕

0<v<nj/2

( ⊕
0<n∈Z+

pj
nj

v+ 1
2

V (nj)v,n

⊕
⊕

0<n∈Z− pj
nj

v+ 1
2

V (nj)v,n

)
⊕

⊕
0<n∈Z+ 1

2

V (nj)0,n

)
,

(5.31)

(5.32) QW (βj) = Λ
( ⊕

0≤v<nj

( ⊕
0<n∈Z+

pj
nj

v

W (nj)v,n ⊕
⊕

0≤n∈Z− pj
nj

v

W (nj)v,n

))
.

We indicate here that F(βj), F 1
V (βj), F 2

V (βj) and QW (βj) in (5.20)-(5.23) are
the restrictions of the corresponding Z/k vector bundles on the right hand side of
(5.29)-(5.32) over X(nj), which will still be denoted as F(βj), F

1
V (βj), F

2
V (βj) and

QW (βj).
We now define the Spinc Dirac operators on X(nj) following [20, Section 4.1].
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Consider the hypothesis in (4.7). By the splitting principle [12, Chapter 17] and
computing as in [5, Lemmas 11.3 and 11.4], we get( ∑

0<v<
nj
2

v · c1
(
V (nj)v +W (nj)v −W (nj)nj−v −N(nj)v

)

+r(nj) ·
nj

2
· ω2

(
W (Nj)nj/2 + V (nj)nj/2 −N(nj)nj/2

))
· unj

= 0 ,

(5.33)

where r(nj) = 1
2 (1 + (−1)nj ), and unj

∈ H2(BZnj
,Z) � Znj

is the generator of
H∗(BZnj

,Z) � Z[unj
]/(nj · unj

) . Then by (5.33), we know that

∑
0<v<

nj
2

v · c1
(
V (nj)v +W (nj)v −W (nj)nj−v −N(nj)v

)
+ r(nj) ·

nj

2
· ω2

(
W (nj)nj/2 + V (nj)nj/2 −N(nj)nj/2

)
is divisible by nj . Therefore, we have

Lemma 5.5 (cf. [20, Lemma 4.2]). Assume that (4.7) holds. Let

L(nj) =
⊗

0<v<nj/2

(
det(N(nj)v)⊗ det(V (nj)v)

⊗ det(W (nj)v)⊗ det(W (nj)nj−v)
)(r(nj)+1)v

(5.34)

be the complex line bundle over X(nj). Then we have

(i) L(nj) has an nj-th root over X(nj).
(ii) Let U1 = TX(nj)⊕ V (nj)

R
0 , U2 = TX(nj)⊕ V (nj)

R

nj/2
. Let

L1 = KX ⊗
⊗

0<v<nj/2

(
det(N(nj)v)⊗ det(V (nj)v)

)
⊗ det

(
W (nj)nj/2

)
⊗ L(nj)

r(nj)/nj ,

L2 = KX ⊗
⊗

0<v<nj/2

(
det(N(nj)v)

)
⊗ det

(
W (nj)nj/2

)
⊗ L(nj)

r(nj)/nj .

Then U1 (resp. U2) has a Z/k Spinc structure defined by L1 (resp. L2).

Remark that in order to define an S1 (resp. Gy) action on L(nj)
r(nj)/nj , we must

replace the S1 (resp. Gy) action by its nj-fold action. Here by abusing notation,
we still say an S1 (resp. Gy) action without causing any confusion.

In what follows, by DX(nj) we mean the S1-equivariant Spinc Dirac operator on
S(U1, L1) or S(U2, L2) over X(nj) (cf. Definition 2.3).
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Corresponding to (2.13), by (5.26), we denote by (cf. [20, (4.16)])

S(U1, L1)
′ = S

(
TXH ⊕ V R

0 , L1 ⊗
⊗

v>0, v≡0mod (nj)

(detNv ⊗ detVv)
−1

)
(5.35)

⊗
⊗

v>0, v≡0mod (nj)

ΛVv ,

S(U2, L2)
′ = S

(
TXH , L2 ⊗

⊗
v>0,v≡0 mod(nj)

(detNv)
−1(5.36)

⊗
⊗

v>0, v≡
nj

2 mod (nj)

(detVv)
−1

)
⊗

⊗
v>0, v≡

nj

2 mod (nj)

ΛVv .

Then by (2.16) and (2.17), for i = 1, 2, we have the following isomorphisms of
Clifford modules over XH :

(5.37) S(Ui, Li) � S(Ui, Li)
′ ⊗

⊗
v>0, v≡0mod (nj)

ΛNv.

We define the Z2-gradings on S(Ui, Li)
′ (i = 1, 2) induced by the Z2-gradings

on S(Ui, Li) (i = 1, 2) and on
⊗

v>0, v≡0mod (nj)
ΛNv such that the isomorphisms

(5.37) preserve the Z2-gradings.
As in [20, p. 952], we formally introduce the following Z/k complex line bundles

over XH :

L′
1 =

(
L−1
1 ⊗

⊗
v>0, v≡0mod (nj)

(detNv ⊗ detVv)⊗
⊗
v>0

(detNv ⊗ detVv)
−1 ⊗KX

) 1
2

,

L′
2 =

(
L−1
2 ⊗

⊗
v>0, v≡0mod (nj)

detNv ⊗
⊗

v>0, v≡nj
2 mod (nj)

detVv ⊗
⊗
v>0

(detNv)
−1 ⊗KX

) 1
2

.

In fact, from (2.16), (2.17), Lemma 5.5 and the assumption that V is spin, one
verifies easily that c1(L

′2
i ) = 0 mod (2) for i = 1, 2, which implies that L′

1 and L′
2

are well-defined Z/k complex line bundles over XH (cf. Section 2.1).
Then by (5.35), (5.36) and the definitions of L1, L2, L′

1 and L′
2, we get the

following identifications of Z/k Clifford modules over XH (cf. [20, (4.19)]):

S(U1, L1)
′ ⊗ L′

1 = S
(
TXH ,KX ⊗

⊗
v>0

(detNv)
−1

)
(5.38)

⊗ S
(
V R

0 ,
⊗
v>0

(detVv)
−1

)
⊗

⊗
v>0, v≡0mod (nj)

Λ(Vv) ,

S(U2, L2)
′ ⊗ L′

2 = S
(
TXH ,KX ⊗

⊗
v>0

(detNv)
−1

)
(5.39)

⊗
⊗

v>0, v≡nj
2 mod (nj)

Λ(Vv) .
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Lemma 5.6 (cf. [20, Lemma 4.3]). Let us write

L(βj)1 = L′
1 ⊗

⊗
v>0

(detNv)

[ pj

nj
v
]
+(p−1)v+1 ⊗

⊗
v>0

(detV v)

[ pj

nj
v
]
+(p−1)v

⊗
⊗

v>0, v≡0mod(nj)

(detNv)
−1 ⊗

⊗
v<0

(detWv)

[
−

pj

nj
v
]
−(p−1)v

⊗
⊗
v>0

(detW v)

[ pj

nj
v
]
+(p−1)v+1 ⊗

⊗
v>0, v≡0mod(nj)

(detW v)
−1 ,

L(βj)2 = L′
2 ⊗

⊗
v>0

(detNv)

[ pj

nj
v
]
+(p−1)v+1 ⊗

⊗
v>0

(detV v)

[ pj

nj
v+

1
2

]
+(p−1)v

⊗
⊗

v>0, v≡0mod(nj)

(detNv)
−1 ⊗

⊗
v<0

(detWv)

[
−

pj

nj
v
]
−(p−1)v

⊗
⊗
v>0

(detW v)

[ pj

nj
v
]
+(p−1)v+1 ⊗

⊗
v>0, v≡0mod(nj)

(detW v)
−1 .

Then L(βj)1 and L(βj)2 can be extended naturally to Z/k Gy × S1-equivariant
complex line bundles over X(nj) which we will still denote by L(βj)1 and L(βj)2
respectively.

Now we compare the Z2-gradings in (5.38). Set

Δ(nj , N) =
∑

nj

2 <v′<nj

∑
0<v, v≡v′ mod (nj)

dimNv + o
(
N(nj)

R
nj

2

)
,

Δ(nj , V ) =
∑

nj

2 <v′<nj

∑
0<v, v≡v′ mod (nj)

dimVv + o
(
V (nj)

R
nj

2

)
,

(5.40)

where o(N(nj)
R
nj

2

) (resp. o(V (nj)
R
nj

2

)) equals 0 or 1, depending on whether the

given orientation on N(nj)
R
nj

2

(resp. V (nj)
R
nj

2

) agrees or disagrees with the complex

orientation of
⊕

v>0, v≡
nj

2 mod (nj)
Nv (resp.

⊕
v>0, v≡

nj

2 mod (nj)
Vv).

By [20, p. 953], we know that for the Z2-gradings induced by τs, the differ-
ences of the Z2-gradings of (5.38) and (5.39) are both (−1)Δ(nj ,N); for the Z2-
gradings induced by τe, the difference of the Z2-gradings of (5.38) (resp. (5.39)) is

(−1)Δ(nj ,N)+Δ(nj ,V ) (resp. (−1)
Δ(nj ,N)+o

(
V (nj)

R

nj/2

)
).

To simplify the notation, we introduce the same functions as in [20, (4.30)],
which are locally constant on XH :

ε(W ) = −1

2

∑
v>0

(dimWv) ·
(([ pj

nj
v
]
+ (p− 1)v

)([ pj

nj
v
]
+ (p− 1)v + 1

)
− (

pj

nj
v + (p− 1)v)

(
2
([ pj

nj
v
]
+ (p− 1)v

)
+ 1

))
− 1

2

∑
v<0

(dimWv) ·
(([

− pj

nj
v
]
− (p− 1)v

)([
− pj

nj
v
]
− (p− 1)v + 1

)
+

( pj

nj
v + (p− 1)v

)(
2
([
− pj

nj
v
]
− (p− 1)v

)
+ 1

))
,

(5.41)
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ε1 =
1

2

∑
v>0

(dimNv − dimVv)
(([ pj

nj
v
]
+ (p− 1)v

)([ pj

nj
v
]
+ (p− 1)v + 1

)
−
( pj

nj
v + (p− 1)v

)(
2
([ pj

nj
v
]
+ (p− 1)v

)
+ 1

))
,

(5.42)

ε2 =
1

2

∑
v>0

(dimNv) ·
(([ pj

nj
v
]
+ (p− 1)v

)([ pj

nj
v
]
+ (p− 1)v + 1

)
−(

pj

nj
v + (p− 1)v)

(
2
([ pj

nj
v
]
+ (p− 1)v

)
+ 1

))
− 1

2

∑
v>0

(dimVv) ·
(([ pj

nj
+ 1

2

]
+ (p− 1)v

)2
−2

( pj

nj
v + (p− 1)v

)([ pj

nj
+ 1

2

]
+ (p− 1)v

))
.

(5.43)

As in [20, (2.23)], for 0 ≤ j ≤ J0, we set

e(p, βj , N) =
1

2

∑
v>0

(dimNv) ·
([ pj

nj
v
]
+ (p− 1)v

)([ pj

nj
v
]
+(p− 1)v + 1

)
,

d′(p, βj , N) =
∑
v>0

(dimNv) ·
([ pj

nj
v
]
+ (p− 1)v

)
.

(5.44)

Then e(p, βj , N) and d′(p, βj , N) are locally constant functions on XH . In partic-
ular, we have

e(p, β0, N) =
1

2
(p− 1)2e(N) +

1

2
(p− 1)d′(N) ,

e(p, βJ0
, N) =

1

2
p2e(N) +

1

2
p d′(N) ,

d′(p, βJ0
, N) = d′(p+ 1, β0, N) = p d′(N) .

(5.45)

By Proposition 5.4, (5.38) and Lemma 5.6, we deduce an analogue of Proposition
5.3.

Proposition 5.7 (cf. [20, Proposition 4.2]). For i = 1, 2, the Z/k Gy-equivariant
isomorphisms of complex vector bundles over XH ,

ri1 : S(TXH ,KX ⊗
⊗
v>0

(detNv)
−1)⊗ (KW ⊗K−1

X )1/2

⊗Fp,j−1(X)⊗ F i
V ⊗Q1(W )

−→ S(Ui, Li)
′ ⊗ (KW ⊗K−1

X )1/2 ⊗F(βj)⊗ F i
V (βj)

⊗QW (βj)⊗ L(βj)i ⊗
⊗

v>0, v≡0mod (nj)

Sym (Nv,0) ,

ri2 : S(TXH ,KX ⊗
⊗
v>0

(detNv)
−1)⊗ (KW ⊗K−1

X )1/2

⊗Fp,j(X)⊗ F i
V ⊗Q1(W )

−→ S(Ui, Li)
′ ⊗ (KW ⊗K−1

X )1/2 ⊗F(βj)⊗ F i
V (βj)

⊗QW (βj)⊗ L(βj)i ⊗
⊗

v>0, v≡0mod (nj)

(
Sym (Nv,0)⊗ detNv

)
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have the following properties:

(i) for i = 1, 2, γ = 1, 2,

r−1
iγ · JH · riγ = JH ,

r−1
iγ · P · riγ = P +

( pj
nj

+ (p− 1)
)
JH + εiγ ,

(5.46)

where εi1 = εi + ε(W )− e(p, βj−1, N), εi2 = εi + ε(W )− e(p, βj , N).
(ii) Recall that o

(
V (nj)

R
nj

2

)
is defined in (5.40). Let

μ1 = −
∑
v>0

[ pj

nj
v
]
dimVv +Δ(nj , N) + Δ(nj , V ) mod (2),

μ2 = −
∑
v>0

[ pj

nj
v + 1

2

]
dimVv +Δ(nj , N) + o

(
V (nj)

R
nj

2

)
mod (2),

μ3 = Δ(nj , N) mod (2),

μ4 =
∑
v

([ pj

nj
v
]
+ (p− 1)v

)
dimWv + dimW + dimW (nj)0 mod (2).

Then for i = 1, 2, γ = 1, 2, we have

r−1
iγ τeriγ = (−1)μiτe , r−1

iγ τsriγ = (−1)μ3τs ,

r−1
iγ τ1riγ = (−1)μ4τ1 .

(5.47)

5.4. A proof of Theorem 4.7.

Lemma 5.8 (Compare with [20, Lemmas 4.4, 4.5 and 4.6]). For X ′, any fixed
connected component of X(nj), the following functions are independent on the con-
nected components of XH in X ′:

εi + ε(W ), i = 1, 2,

d′(p, βj , N) + μi + μ4 mod (2), i = 1, 2, 3,∑
v>0

[ pj

nj
v
]
dimVv +Δ(nj , V ) mod (2),∑

v>0

[ pj

nj
v + 1

2

]
dimVv + o

(
V (nj)

R
nj

2

)
mod (2).

(5.48)

Proof. The proof is the same as that of [20, Lemmas 4.4, 4.5 and 4.6].

Lemma 5.8 implies that d′(p, βj−1, N) +
∑

0<v dimNv + μi + μ4 mod (2) (i =
1, 2, 3) are constant functions on each connected component of X(nj) (cf. [20,
(4.42)]).

By (5.29), (5.30), (5.31), (5.32) and Lemma 5.6, we know that the Dirac operator
DX(nj) ⊗ F(βj) ⊗ F i

V (βj) ⊗ QW (βj) ⊗ L(βj)i (i = 1, 2) is well defined on X(nj).
Observe that the two equalities in Theorem 2.8 are both compatible with the Gy

action. Thus, by using Proposition 5.7 and applying both the first and the second
equalities of Theorem 2.8 to each connected component of X(nj) separately, we
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deduce that for i = 1, 2, 1 ≤ j ≤ J0, m ∈ 1
2Z, 1 ≤ � < N , h ∈ Z, τ = τe1 or τs1,∑

α

(−1)d
′(p,βj−1,N)+

∑
v>0 dimNv APS-indτ

(
DXH,α ⊗ (KW ⊗K−1

X )1/2

⊗Fp,j−1(X)⊗ F i
V ⊗ Q1(W ),m+ e(p, βj−1, N), �, h

)
≡

∑
β

(−1)d
′(p,βj−1,N)+

∑
v>0 dimNv+μ APS-indτ

(
DX(nj)

⊗ (KW ⊗K−1
X )1/2 ⊗F(βj)⊗ F i

V (βj)⊗QW (βj)⊗ L(βj)i,

m+ εi + ε(W ) + (
pj

nj
+ (p− 1))h, �, h

)
≡

∑
α

(−1)d
′(p,βj ,N)+

∑
v>0 dimNv APS-indτ

(
DXH,α ⊗ (KW ⊗K−1

X )1/2

⊗Fp,j(X)⊗ F i
V ⊗Q1(W ),m+ e(p, βj , N), �, h

)
mod kZ ,(5.49)

where
∑

β means the sum over all the connected components of X(nj). In (5.49),

if τ = τs1, then μ = μ3 + μ4, and if τ = τe1, then μ = μi + μ4. Combining (5.45)
with (5.49), we get (4.24).

The proof of Theorem 4.7 is completed.
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